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Abstract

In this note we study a question of whether birth-and-death chains
under a special setting of random environment are transient of recurrent.
We discuss some critical argument corresponding to Konsowa’s results
(Konsowa, Stat. Prob. Lett., 56 (2002), 193-197).

Keywords: birth-and-death chains, random environment, transient and re-
current

1 Introduction
Consider the sequence of independent random variables {a,} with ap = 1 and

o, = { a,, with probability 1/2, forn > 1,

b,, with probability 1/2,
where two sequences {a, } and {b,} satisfy 0 < a,, b, < 1 for n > 1 and
lim a, = a,, lim b,=25,, 0<a,,b, <l. (1)
n—oo n—oo

For {a,} we study a random walk {X,} on nonnegative integers, that is,
Xo=0and forn>1

P(Xp=1+1|Xp1 =14, Xpn_9 =ip-g, -, X1 = i1, Xo = 0, environment{a,, })
=a; 120,

P(X, =1—1|Xp_1 =%, Xn—2 =tn_2, -+, X1 = 41, Xo = 0, environment{a, })
=1—-q, t>0.

We call the random walk {X,,} a birth-and-death chain in the random environ-
ment {ay,}. Indeed if a,, = b, for n > 1 then the environment is deterministic,
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so that the walk is well-known as the original birth-and-death chain [4, e.g.
Example 1.3.4]. Moreover if a, = b, = 1/2 for n > 1 the walk is the simple
random walk. In this article, we study whether {X,,} is transient or recurrent.

If both parameters a,, and b, are constant, then independent random vari-
ables {a,} are identically distributed. So we can apply a general theory of
random walks in a random environment [9]. Since {o,} are not identically
distributed, we need to investigate the relationship between the behavior of
parameters and the recurrence of the chains.

On the other hand, [7] and [5] studied a simple random walk (SRW) on
random N-trees. Since the growth of N-tree is random, we can regard it
as a birth-and-death chain in a random environment. In fact, their random
environment is

o, = { 1/2, with probability 1 — g,, forn > 1.

2/3, with probability g,.

They proved that if liminfng, > 1/log2 (resp. limsupng, < 1/log2) then
SRW is transient a.s. (resp. recurrent a.s.) Moreover [6] gave examples for
SRW of either type when lim g, = 1/log2. Note that our setting is ¢, = 1/2
for any n instead of introducing parameters {a,} and {b,}. In this article we
discuss some critical argument corresponding to their results.

2 Birth-and-death chains in a random envi-
ronment

To verify whether the birth-and-death chains are transient of recurrent, we
investigate the convergence of 3°°72, [T7_; T‘:& (see [7]), that is,

transient a.s. if >0, [Tr; Tk& < 00 a.8.,

recurrent a.s. if > oo, [Tro,; Tk& 00 a.s.

A birth-and-death chain is {
(2)

For ¢ > 1 we have

l—a;] 1, (1—a)(1—b) [ 1—a,-] 1 bi(1—a)\”
E|l R e A S log — | = = {log -2 )
[ 8 i ] 2 o8 aibi ,Var o8 (¢ 7] 4 log al(l - bl)

(3)

Setting 02 = Var [log 1;:—:11] and s7 = Y7, 07, we quote the following mild

theorem in the case of lim,, o 2 = 00.

THEOREM 2.1 [2, p.200 Theorem 4.10] For independent random variables
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{X,}, assume lim,,_, s2 = 0o. Then for arbitrary € > 0,

=0 a.s.

i Zia(X: = BIX)

n—00 ( 5%)1 /24
Using the theorem, we have the following proposition.

PrOPOSITION 2.1 Then birth-and-death chains in the random environment
{a;} are transient (resp. recurrent) a.s. if a, + b, > 1 (Tesp. a, +b, <1).

2
Proof. First, we assume lim,, o 52 < 0o. Then lim; o, 07 = (log a—%—';%) =

0. Hence we have a, = b.. So if a, + b, > 1 then a, = b, > 1/2 Since the
random walk {X]} with transition probability

PX ,,=i+1X,=i)=1-P(X,,=i—-1X, =1i)=a,>1/2
+1 n+1 n

is transient, so is {X,} by the usual technique of coupling (see [3]). Using the
same argument, we can see that {X,} is recurrent if a, + b, < 1.

Second, we assume lim,,_,, s2 = co. Then by Theorem 2.1, for any § > 0
there exists V such that if n > NV

4@WW<iW~HMKq@””a&

i=1

for any € > 0. Consequently we have

exp{ 5(s2) """ + ZEX]}<H

i=1
(4)
Calling RHS (resp. LHS) of Eqn. (4) z, (resp. y,), we apply z,, (resp. y,)
to Raabe’s test for the check of Eqn. (2). Now we see

Tnt1 _ exp {6 { (si+1)1/2+6 - (si)l/ﬂs} + E [log ————-—1 — a"“] } .

Tn Apt1

By Eqn. (1), it turns out that 62, is bounded. So using Taylor expansion, we

have
(Si+1)1/2+€ B (82)1/2+6 _ (82)1/2—{—5 { (1 N 0§;1>1/2+s - 1} (5)

n

cf 1 2 24\
= (si)l/pr {<—+8>g9;—1+0((-0"—;1))}—>0 as n — 00.
2 82 s2

<exp{5( 2) ”Hij[X,}} as
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On the other hand, lim, .., E [log %] = ;log (Q—_a—;Lgl_L)) # 0, be-

Qn41

cause a, + b, # 1. Using Equ. (3}, we obtain

lim n (1 _ ””"+1> = lm n ll - (w)m} 6)

= limn[1—<1+tw)l/2] :{ —o0, ifa,+b>1,

n—00 anbn +00, ifa, +b. < 1.

Similarly the same result holds for y,. This completes the proof of the propo-
sition. g

In the above proof, we use the same technique of [5]. However note that
we do not need the sharp theorem of the law of iterated logarithm for proving
it.

Next, we assume that a, + b, = 1. Setting

Ap = Oy + é.n,, bn = b* + Tiny T}l{gogn = nll_)ngonn = 07

we study the relationship between &,, 7, and the recurrence of the chains. Now
we assume lim,, o, 52 < co. Then using Kolmogorov’s Convergence Criterion
[8, e.g. p.212 Theorem 7.3.3], it turns out

© ; 1- 1—
> (longaE - E [log

k=1

ak} ) converges a.s. (7)

THEOREM 2.2 Assume that a, + b, = 1 and lim,,_, s2 < co. Then the birth-
and-death chain is transient (resp. recurrent) a.s. if imsup,,_,., (& +1,) < 3
(resp. iminf, o (& +1n) > ).

Since lim,, .., 82 < oo holds under the condition a, + b, = 1, we deduce
a, = b, = 1/2 using the same argument of the proof of Proposition 2.1.
Proof. Using Eqn. (7), there exist C; and C; such that

1- l—ai

—oo<C'1<Z<log :

i=1 ?

% _ B [log D <Cy<oo as. (8)

1

Hence

exp{C’l-l—ZE[log az]}<H ‘a <exp{Cg+ZE[log1 a}} a.s.

i=1 @ =1 K i=1 i
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We use Raabe’s test in the same way as the proof of Proposition 2.1. Assume
that the limit of n (1 — .T;H_l/l‘:l) exists, where z, = exp {Z?zl E [log %1] }

Then
. -T;H.] . 1—ann
limn|l—--—"=)=limn{l—expE |log————
oon, (=an)(d—by) _ .on (1/246)(1/2+ 1)
= lim ——log———=/= """ — Jim _1
w2 8T o b oo 208 (1/2 — €2)(1/2 — nn)

If

.on En +1n .n 1
— | 1 = lim =1 1+ +—+—5—1-
Jm 508 ( + 1/2 - &)(1/2 - 77'n)> aln, 5 108 ( + (1—2&)(1—2%))

4(En+nn)
Note that 1 — e* = —z + O(a?) for |z| < 1 for the second equality. There-
fore if limsup,_ . n(& + M) < 1, we see lim, o7 (1 - z—;#) < 1. Hence

Eqn. (4) is divergent, so that the chain is recurrent. On the other hand, if
liminf, o n(&, +7n) > 1, then we can see that the chain is transient. y

In the case of lim, .., 52 = oo and a. = b, = 1/2, we have the same
result of Theorem 2.2, because we see that Eqn. (5) goes to 0 faster than
Ellog {(1 — any1)/an+1}]- However it is not tractable to classify the case of
lim,, o 82 = 0o and a, # b, = 1 — a,.

Under the condition of Theorem 2.2, if lim,_,o (&, + 1) = 1/2, we have
an example of either type corresponding to [6].

EXAMPLE 2.1 If &, = 1, = 1/(4n) then s2 = 0 and the birth-and-death chain
is recurrent a.s. In fact, we only check the divergence of 3, z/, in the proof
of Theorem 2.2. Since z), = [[~,(2¢ —1)/(2¢ +1) = 1/(2n + 1), Eqn. (2) is
divergent.

EXAMPLE 2.2 If &, = 1, = (1 + 3/logn)/(4n) then s2 = 0 and the birth-
and-death chain is transient a.s. Now we check ¥, 2/, < oo. Setting v, =
{n(logn)?} ", wesee T, v, < 0. Sincez!, = [[7,(2 — 1 — 3/logi)/(2i + 1 + 3/ log ),
we have
'
T, _2n+3+3/log(n+1)_1+l 3 +0( 1 )
nlogn

T, 2n+1-3/log(n+1) n  nlogn
On the other hand,

2
Un+1 n(logn)? n n

where ¢, = (log(n + 1) —logn)/logn < 1/(nlogn). So we obtain z;,/z; ., >

Un/Un+1 for sufficient large n. Therefore using the ratio comparison test [1, e.g.
p.231 Theorem 6], 3°,, 2, < oo holds. So is Eqn. (2).
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