On an $\{f, m ; t, s\}$-max-hyper and a $\{k, m ; t, s\}$-min \cdot hyper in a Finite Projective Geometry $\operatorname{PG}(t, s)$

Fumikazu Tamari
Department of Mathematics, Fukuoka University of Education
(Received August 31, 1981)

1. Introduction

We denote a finite projective geometry of t dimensions over the Galois field $G F(s)$ with s elements by $\operatorname{PG}(t, s)$ where $t \geqq 2$ and s is a prime or prime power. The concept of an $\{f, m ; t, s\}$-max-hyper (or a $\{k, m ; t, s\}$-min-hyper) with weight $W=$ ($w_{1}, w_{2}, \cdots, w_{r}$) in $\operatorname{PG}(t, s)$ has been introduced by N. Hamada and F. Tamari in [2]. It is known in [2,3] that the concept of an $\{f, m ; t, s\}$-max-hyper (or a $\{k, m ; t, s\}$ -\min-hyper) is useful to investigate optimal linear codes over the Galois field and maximal t linearly independent sets.

In the present paper we get an upper bound on f for an $\{f, m ; t, s\}$-max-hyper with weight ($w_{1}, w_{2}, \cdots, w_{r}$) for given integers m, t and s, and show that there exist $\{f, m ; t, s\}$-max-hypers which attain the upper bound for several given integers m, t and s.

Finally, we obtain a lower bound on k for a $\{k, m ; t, s\}$-min hyper for some given integers m, t and s.

2. An upper bound on \boldsymbol{f} for an $\{\boldsymbol{f}, \mathrm{m} ; \mathrm{t}, \mathrm{s}\}$-max -hyper for given integers $\boldsymbol{m}, \boldsymbol{t}$ and \boldsymbol{s}

Let F be a set of points $P_{1}, P_{2}, \cdots, P_{k}$ in $P G(t, s)$ and let $W=\left(w_{1}, w_{2}, \cdots, w_{k}\right)$ be an ordered set of positive integers $w_{1}, w_{2}, \cdots, w_{k}$. Let $\left(s^{i}-1\right) /(s-1)=v_{i}$ for any positive integer i. Let $H_{i}\left(i=1,2, \cdots, v_{t+1}\right)$ be a hyperplane in $P G(t, s)$ and let

$$
\begin{equation*}
F \cap H_{i}=\left\{P_{i_{i j}} ; j=1,2, \cdots, \pi_{i}\right\} \tag{2.1}
\end{equation*}
$$

for $i=1,2, \cdots, v_{t+1}$.

Definition 2.1. (F, W) is said 'to be an $\{f, m ; t, s\}$-max-hyper (or an $\{f, m ; t, s\}$-min.hyper $\}$ with weight W if

$$
\begin{equation*}
\max _{i} \sum_{j=1}^{\pi_{i}} w_{l_{t J}}=m\left(o r \min _{i} \sum_{j=1}^{\pi_{i}} w_{l_{l y}}=m\right) \tag{2.2}
\end{equation*}
$$

where $f=\sum_{r=1}^{k} w_{r}$ and $\min _{i} \sum_{j} w_{l_{l j}}=0$ if $F \cap H_{i}=\phi$ for some i.

Note that in the special case $t=2$, an $\{f, m ; t, s\}$-max-hyper with weight $W=$ $(1,1, \cdots, 1)$ is an $\{f ; m\}$-arc in $P G(2, s)$ (cf. [1, 2]).

Let $N=\left\|n_{i j}\right\|\left(i=1,2, \cdots, v_{t+1}, j=1,2, \cdots, v_{t+1}\right)$ be the incidence matrix of v_{t+1} hyperplanes $H_{i}\left(i=1,2, \cdots, v_{t+1}\right)$ and v_{t+1} points $Q_{j}\left(j=1,2, \cdots, v_{t+1}\right)$ in $P G(t, s)$, where

$$
n_{i j}= \begin{cases}1, & \text { if the } i \text { th hyperplane } H_{i} \text { contains the } j \text { th point } Q_{j} \tag{2.3}\\ 0, & \text { otherwise } .\end{cases}
$$

Let (F, W) be an $\{f, m ; t, s\}$-max-hyper (or an $\{f, m ; t, s\}$-min.hyper) with weight $W=\left(w_{1}, w_{2}, \cdots, w_{r}\right)$ where $F=\left\{Q_{i k}\right\}(k=1,2, \cdots, r)$ and let

$$
x_{j}= \begin{cases}w_{k}, & \text { if } j=i_{k}(k=1,2, \cdots, r), \\ 0, & \text { otherwise }\end{cases}
$$

for $j=1,2, \cdots, v_{t+1}$. Then it is easy to see that

$$
\begin{equation*}
\max _{i} \sum_{j=1}^{v_{t+1}} n_{i j} x_{j}=m\left(\text { or } \min _{i} \sum_{j=1}^{v_{t+1}} n_{i j} x_{j}=m\right) \text { and } \sum_{j=1}^{v_{t+1}} x_{j}=f . \tag{2.4}
\end{equation*}
$$

Conyersely, let $x_{j}\left(1 \leqq j \leqq v_{t+1}\right)$ be nonnegative integers satisfying the condition (2.4) and let E be a set of integers j such as $x_{j}>0$, i.e., $E=\left\{i_{1}, i_{2}, \cdots, i_{r}\right\}$. Put $w_{k}=x_{i_{k}}$ $(k=1,2, \cdots, r)$ and $F=\left\{Q_{i_{k}}\right\}$, then (F, W) is an $\{f, m ; t, s\}$-max-hyper (or an $\{f, m$; $t, s\}$-min hyper) with weight $W=\left(w_{1}, w_{2}, \cdots, w_{r}\right)$.

We prepare the following lemma in order to prove Theorem 2.2 and 2.4.

Lemma 2.1. Let $\left(F_{1}, W_{1}\right)$ be an $\left\{f_{1}, m_{1} ; t, s\right\}$-max-hyper with weight W_{1} such that $f_{1} \geqq f$ for any $\left\{f, m_{1} ; t, s\right\}$-max-hyper. If $1 \leqq m_{2}<m_{1}$, then

$$
f_{2} \leqq f_{1}-\left(m_{1}-m_{2}\right)
$$

for any $\left\{f_{2}, m_{2} ; t, s\right\}$-max-hyper.

Proof: Suppose that there exists an $\left\{f_{2}, m_{2} ; t, s\right\}$-max.hyper $\left(F_{2}, W_{2}\right)$ such that $f_{2}>f_{1}+m_{2}-m_{1}$ where $F_{2}=\left\{P_{i}\right\}(i=1,2, \cdots, k)$ and $W_{2}=\left(w_{1}, w_{2}, \cdots, w_{k}\right)$ Let H_{i} ($i=1,2, \cdots, v_{t+1}$) be a hyperplane in $P G(t, s)$ and let $F_{2} \cap H_{i}=\left\{P_{l_{i j}}: j=1,2, \cdots, \pi_{i}\right\}$ for $i=1,2, \cdots, v_{t+1}$. Let α be an integer such that $\sum_{j=1}^{\pi_{\alpha}} w_{l_{\alpha j}}=m_{2}$ and put $w_{i}^{*}=w_{i}+m_{1}-m_{2}$ or w_{i} according as $i=l_{\alpha 1}$ or not. Put $W^{*}=\left(w_{i}^{*}\right)$. Then $\left(F_{2}, W^{*}\right)$ is an $\left\{f^{*}, m_{1} ; t, s\right\}$ -max-hyper with weight W^{*} such that $f^{*}>f_{1}$ where $f^{*}=f_{2}+m_{1}-m_{2}$, which implies contradiction. This completes the proof.

Let

$$
\begin{equation*}
m=\mathbf{t}-1+\sigma_{1} v_{1}+\sigma_{2} v_{2}+\cdots+\sigma_{t-1} v_{t-1}+\sigma_{t} v_{t} \tag{2.5}
\end{equation*}
$$

where σ_{i} 's are integers such that $0 \leqq \sigma_{1} \leqq s, 0 \leqq \sigma_{i} \leqq s-1(i=2, \cdots, t-1)$ and $\sigma_{t} \geqq 0$. Then we obtain

Theorem 2.2. Let (F, W) be an $\{f, m ; t, s\}$-max-hyper in $P G(t, s)$. Then

$$
\begin{equation*}
f \leqq t-1+\sigma_{1} v_{2}+\cdots+\sigma_{t-1} v_{t}+\sigma_{t} v_{t+1} \tag{2.6}
\end{equation*}
$$

where m is an integer given by (2.5).

Proof. Let (F, W) be an $\{f, m ; t, s\}$-max hyper with weight $W=\left(w_{1}, w_{2}, \cdots, w_{k}\right)$ where $f=\sum_{r=1}^{k} w_{r}, m=t-1+\sum_{i=1}^{t} \sigma_{i} v_{l}$ and $F=\left\{P_{1}, P_{2}, \cdots, P_{k}\right\}$.
Let

$$
F \cap H_{i}=\left\{P_{i_{i}}: j=1, \cdots, \pi_{i}\right\} \quad\left(i=1,2, \cdots, v_{t+1}\right)
$$

for an hyperplane H_{i} in $P G(t, s)$. Let \mathscr{P}_{t} denote the set of all points in $P G(t, s)$. The proof is by induction on t.
(i) The case $t=2$. If $w_{i} \leqq \sigma_{2}$ for all $i=1,2, \cdots, k$, then it follows from $k \leqq v_{3}$ that $f \leqq \sigma_{2} v_{3}<1+\sigma_{1} v_{2}+\sigma_{2} v_{3}$. If there exists an integer β such that $w_{\beta} \geqq \sigma_{2}+1$, then consider the point P_{β} in F. Let $H_{\beta q}(q=1,2, \cdots, s+1)$ be $s+1$ lines in $P G(2, s)$ passing through the point P_{β}. Then $\left(H_{\beta q}-P_{\beta}\right) \cap\left(H_{\beta q^{\prime}}-P_{\beta}\right)=\phi\left(q \neq q^{\prime}\right)$ and $\bigcup_{q=1}^{s+1} H_{\beta q}=\mathscr{P}_{2}$. It follows from $\max _{i} \sum_{j} w_{l_{i j}}=1+\sigma_{1} v_{1}+\sigma_{2} v_{2}$ that

$$
\begin{aligned}
f=\sum_{r=1}^{k} w_{r} \leqq & \left(1+\sigma_{1} v_{1}+\sigma_{2} v_{2}\right)(s+1)-s w_{\beta} \\
& =1+\sigma_{1} v_{2}+\sigma_{2} v_{3}+\left(\sigma_{2}+1-w_{\beta}\right) s .
\end{aligned}
$$

Since $w_{\beta} \geqq \sigma_{2}+1$, we have $f \leqq 1+\sigma_{1} v_{2}+\sigma_{2} v_{3}$. Hence Theorem 2.2 holds in this case. (ii) The case $t=n+1$. Suppose that Theorem 2.2 is true in the case $t=n$. Then we shall prove Theorem 2.2 is true in the case $t=n+1$. Consider α such that

$$
\begin{equation*}
\sum_{j=1}^{\pi_{\varepsilon}} w_{l_{x j}}=n+\sigma_{1} v_{1}+\cdots+\sigma_{n} v_{n}+\sigma_{n+1} v_{n+1} . \tag{2.7}
\end{equation*}
$$

Let $G_{i}\left(i=1,2, \cdots, v_{n+1}\right)$ be an $(n-1)$-flat contained in H_{α} and let $F \cap G_{i}=\left\{P_{a_{i}}: j=\right.$ $\left.1,2, \cdots, \lambda_{i}\right\}$. Suppose that $\max _{i} \sum_{j=1}^{\lambda_{i}} w_{a_{i j}} \leqq n-1+\sum_{j=1}^{n} \sigma_{j+1} v_{j}$, i.e., $\max _{i} \sum_{j=1}^{\lambda_{i}} w_{a_{i j}}=$ $n-1+\sum_{j=1}^{n} \sigma_{j+1} v_{j}-\delta$ where δ is a nonnegative integer. Write $F^{*}=F \cap H_{\alpha}^{i}$ and $W^{j=1}=$ $\left(w_{l_{\alpha}}\right)$. Since H_{α} can be identified with $\operatorname{PG}(n, s)$, it follows that $\left(F^{*}, W^{*}\right)$ is an $\left\{f^{*}, m^{*}\right.$; $n, s\}$-max-hyper in $P G(n, s)$ where $f^{*}=\sum_{j=1}^{\pi_{\infty}} w_{l_{\alpha j}}$ and $m^{*}=n-1+\sum_{i=1}^{n} \sigma_{i+1} v_{i}-\delta$. Therefore, it is easily shown from the assumption of induction and Lemma 2.1 that $\sum_{j=1}^{n_{\alpha}} w_{i_{\alpha j}}$ $\leqq n-1+\sum_{i=1}^{n} \sigma_{i} v_{i+1}-\delta$. This contradicts (2.7).
Hence we have

$$
\max _{i} \sum_{j=1}^{\lambda_{i}} w_{a_{i j}} \geqq n+\sum_{j=1}^{n} \sigma_{j+1} v_{j}
$$

Let β be an integer such that

$$
\begin{equation*}
\sum_{j=1}^{\lambda_{8}} w_{a_{B j}} \geqq n+\sum_{i=1}^{n} \sigma_{i+1} v_{i} \tag{2.8}
\end{equation*}
$$

Put $\left(F \cap H_{\gamma_{i}}\right)-G_{\beta}=\left\{P_{d_{i j}}: j=1,2, \cdots, \mu_{i}\right\}$ for $i=1,2, \cdots, s+1$ where $H_{\gamma_{i}}$'s are hyperplanes in $P G(n+1, s)$ passing through G_{β}. Since $\left\{\left(F \cap H_{\gamma_{i}}\right)-G_{\beta}\right\} \cap\left\{\left(F \cap H_{\gamma_{j}}\right)-G_{\beta}\right\}=$

$$
\begin{equation*}
\sum_{r=1}^{k} w_{r}=\sum_{j=1}^{\lambda_{\beta}} w_{a_{\beta j}}+\sum_{i=1}^{s+1} \sum_{j=1}^{\mu_{i}} w_{d_{i j}} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{\pi v_{i}} w_{l_{\gamma_{i} j}}=\sum_{j=1}^{\lambda_{\beta}} w_{a_{\beta j}}+\sum_{j=1}^{\mu_{i}} w_{d_{i j}} \leqq n+\sum_{j=1}^{n+1} \sigma_{j} v_{j} \tag{2.10}
\end{equation*}
$$

for $i=1,2, \cdots, s+1$.
Hence it follows from (2.8), (2.9) and (2.10) that

$$
\begin{aligned}
f & =\sum_{r=1}^{k} w_{r} \leqq \sum_{j=1}^{\lambda_{\beta}} w_{a_{\beta j}}+\sum_{i=1}^{s+1}\left\{n+\sum_{j=1}^{n+1} \sigma_{j} v_{j}-\sum_{j=1}^{\lambda_{\beta}} w_{a_{\beta j}}\right\} \\
& =\left(n+\sum_{j=1}^{n+1} \sigma_{j} v_{j}\right)(s+1)-s \sum_{j=1}^{\lambda_{\beta}} w_{a_{\beta j}} \\
& \leqq n+\sum_{i=1}^{n+1} \sigma_{i} v_{i+1} .
\end{aligned}
$$

This completes the proof.
In the special case $t=2$, we have the following corollary:

Corollary 2.3. In the case $t=2$ and $\sigma_{2}=0$,

$$
\begin{equation*}
f \leqq 1+(m-1)(s+1) \tag{2.11}
\end{equation*}
$$

for any $\{f, m ; 2, s\}$-max.hyper in $P G(2, s)$.

Remark. The bound (2.11) is well known for $\{f, m ; 2, s\}$-max-hypers with weight $(1,1, \cdots, 1)$, i.e., $\{f ; m\}$-arcs. An $\{f ; m\}$-arc which attains the bound (2.11) is said to be a maximal $\{f ; m\}$-arc.

Let $M_{1}(t, s)$ be a set of integers m such that

$$
\begin{equation*}
m=t-1+\sigma_{1} v_{1}+\sigma_{2} v_{2}+\cdots+\sigma_{t-1} v_{t-1} \tag{2.12}
\end{equation*}
$$

where σ_{i} 's are integers such that $0 \leqq \sigma_{1} \leqq s, 0 \leqq \sigma_{i} \leqq s-1(i=2, \cdots, t-1)$ and $\left(\sigma_{1}, \sigma_{2}, \cdots\right.$, $\left.\sigma_{t-1}\right) \neq(0,0, \cdots, 0)$.

Let $M_{2}(t, s)$ be a set of integers m such that

$$
\begin{equation*}
m=t-1+\sigma_{k}^{*} v_{k}-\delta_{k}+\sum_{i=k+1}^{t-1} \sigma_{i}^{*} v_{i} \tag{2.13}
\end{equation*}
$$

where k, δ_{k} and σ_{k}^{*} 's are integers such that $3 \leqq k \leqq t-1,1 \leqq \delta_{k} \leqq k-2,1 \leqq \sigma_{k}^{*} \leqq s-1$ and $0 \leqq \sigma_{j}^{*} \leqq s-1(k+1 \leqq j \leqq t-1)$.

It is easy to see that $M_{1}(t, s) \cap M_{2}(t, s)=\phi$ and $\left|M_{1}(t, s)\right|+\left|M_{2}(t, s)\right|=(s+1) s^{t-2}$
$-1+\sum_{k=3}^{t-1}(k-2)(s-1) s^{t-1-k}=v_{t}-(t-1)$ where $|A|$ denotes the cardinality of a set A. Hence an integer $m\left(t \leqq m \leqq v_{t}\right)$ can be expressed uniquely as (2.12) or (2.13).

Let

$$
\begin{equation*}
m^{*}=t-1+\sigma_{k}^{*} v_{k}-\delta_{k}+\sum_{i=k+1}^{t-1} \sigma_{i}^{*} v_{i}+\sigma_{t}^{*} v_{t} \tag{2.14}
\end{equation*}
$$

where k, δ_{k} and $\sigma_{i}^{*}(k \leqq i \leqq t-1)$ are integers given in (2.13) and σ_{i}^{*} is a nonnegative integer. Then we have

Theorem 2.4. Let (F, W) be an $\left\{f, m^{*}, t, s\right\}$-max-hyper in $P G(t, s)$ where m^{*} is an integer given by (2.14). Then

$$
\begin{equation*}
f \leqq t-1+\sigma_{k}^{*} v_{k+1}-\delta_{k}+\sum_{i=k+1}^{t-1} \sigma_{i}^{*} v_{i+1}+\sigma_{t}^{*} v_{t+1} \tag{2.15}
\end{equation*}
$$

Proof. Let $m_{1}=m^{*}+\delta_{k}$. It follows from Theorem 2.2 that

$$
f_{1} \leqq t-1+\sigma_{k}^{*} v_{k+1}+\sum_{i=k+1}^{t-1} \sigma_{i}^{*} v_{i+1}+\sigma_{t}^{*} v_{t+1}
$$

for any $\left\{f_{1}, m_{1} ; t, s\right\}$-max-hyper. Then we have from Lemma 2.1

$$
f^{*} \leqq t-1+\sigma_{k}^{*} v_{k+1}-\delta_{k}+\sum_{i=k+1}^{t-1} \sigma_{i}^{*} v_{i+1}+\sigma_{t}^{*} v_{t+1}
$$

This completes the proof.

Theorem 2.5. Let σ be a nonnegative integer and let δ be an integer such that $0 \leqq \delta \leqq t-1$. Then

$$
\begin{equation*}
f \leqq \sigma v_{t+1}+\delta \tag{2.16}
\end{equation*}
$$

for any $\left\{f, \sigma v_{t}+\delta ; t, s\right\}$-max-hyper in $P G(t, s)$.
Proof is similar to that of Theorem 2.1 and hence omitted here.
3. A max-hyper which attain the upper bound (2.6), (2.15) or (2.16)

Let $\sigma_{i}(i=1,2, \cdots, t-1)$ be the integers given in (2.5) and let $\varepsilon_{1}=s-\sigma_{1}, \varepsilon_{i}=$ $s-1-\sigma_{i}(2 \leqq i \leqq t-1)$ and $D=\left\{\mu: \varepsilon_{\mu} \neq 0,1 \leqq \mu \leqq t-1\right\}$. Let \mathscr{P} be a set of $\varepsilon_{1} 1$-flats, ε_{2} 2-flats, $\cdots, \varepsilon_{t-1}(t-1)$-flats in $P G(t, s)$, i.e., let

$$
\mathscr{B}=\left\{V_{i}^{(\mu)}: i=1,2, \cdots, \varepsilon_{\mu}, \mu \in D\right\}
$$

where $V_{i}^{(\mu)}\left(i=1,2, \cdots, \varepsilon_{\mu}\right)$ denote (not necessarily distinct) $\varepsilon_{\mu} \mu$-flats in $\operatorname{PG}(t, s)$ for each integer μ in D. In the special case $\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{t-1}\right)=(0,0, \cdots, 0), \mathscr{B}$ is the empty set ϕ. Let $\eta_{j}(\mathscr{B})\left(j=1,2, \cdots, v_{t+1}\right)$ be the number of flats $V_{i}^{(\mu)}\left(1 \leqq i \leqq \varepsilon_{\mu}, \mu \in D\right)$ in \mathscr{B} which contain the point Q_{j} in $\operatorname{PG}(t, s)$. Let us denote by $\mathscr{F}\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{t-1} ; t, s\right)$, the
family of all sets \mathscr{B} which consist of $\varepsilon_{1} 1$-flats, $\cdots, \varepsilon_{t-1}(t-1)$-flats in $P G(t, s)$.
Theorem 3.1. Let m be an integer given by (2.5). If there is a set \mathscr{B} in $\mathscr{F}\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{t-1} ; t, s\right)$ such that $\max \left\{\eta_{j}(\mathscr{O})-1: 1 \leqq j \leqq v_{t+1}\right\} \leqq \sigma_{t}$, then there exists a max-hyper which attains the upper bound (2.6).

Proof. As mentioned in Section 2, it is sufficient to show that there exists a set of nonnegative integers $x_{j}\left(1 \leqq j \leqq v_{t+1}\right)$ satisfying the following conditions

$$
\sum_{j=1}^{v_{t+1}} x_{j}=t-1+\sigma_{1} v_{2}+\cdots+\sigma_{t} v_{t+1}
$$

and

$$
\sum_{j=1}^{v_{t+1}} n_{i j} x_{j} \leqq t-1+\sigma_{1} v_{1}+\cdots+\sigma_{t} v_{t}
$$

where $n_{i j}$ is an integer given by (2.3). Let \mathscr{B} be a set in $\mathscr{F}\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{t-1} ; t\right.$,s) such that $\max \left\{\eta_{j}(\mathscr{B})-1: 1 \leqq j \leqq v_{t+1}\right\} \leqq \sigma_{t}$. Put $x_{j}=\sigma_{t}+1-\eta_{j}(\mathscr{B})$ for $j=1,2, \cdots, v_{t+1}$.
Since $\sum_{j=1}^{v_{i+1}} \eta_{j}(\mathscr{O})=\sum_{i=1}^{t-1} \varepsilon_{i} v_{i+1}$, it follows that

$$
\begin{align*}
\sum_{j=1}^{v_{t+1}} x_{j} & =\left(\sigma_{t}+1\right) v_{t+1}-\sum_{j=1}^{v_{t+1}} \eta_{j}(\mathscr{G}) \tag{3.1}\\
& =\left(\sigma_{t}+1\right) v_{t+1}-\sum_{i=1}^{t-1} \varepsilon_{i} v_{i+1} \\
& =\sigma_{t} v_{t+1}+t-1+s v_{2}+\sum_{i=2}^{t-1}(s-1) v_{i+1}-\sum_{i=1}^{t-1} \varepsilon_{i} v_{i+1} \\
& =t-1+\left(s-\varepsilon_{1}\right) v_{2}+\sum_{i=2}^{t-1}\left(s-1-\varepsilon_{i}\right) v_{i+1}+\sigma_{t} v_{t+1} \\
& =t-1+\sigma_{1} v_{2}+\cdots+\sigma_{t} v_{t+1} .
\end{align*}
$$

Let H_{i} and $V_{j}^{(\mu)}\left(1 \leqq j \leqq \varepsilon_{\mu}, \mu \in D\right)$ be a hyperplane in $P G(t, s)$ and a μ-flat in \mathscr{B}, respectively. Since $\left|H_{i} \cap V_{j}^{(\mu)}\right|=v_{\mu}$ or $v_{\mu+1}$ for all i and j provided $\varepsilon_{\mu} \neq 0$, it follows that

$$
\begin{equation*}
\sum_{j=1}^{v_{i+1}} n_{i j} \eta_{j}(\mathscr{P})=\sum_{\mu \in D} \sum_{j=1}^{\varepsilon_{\mu}}\left|H_{i} \cap V_{j}^{(\mu)}\right| \geqq \sum_{\mu=1}^{t-1} \varepsilon_{\mu} v_{\mu} \tag{3.2}
\end{equation*}
$$

Thus from (3.2) we have

$$
\begin{align*}
\sum_{j=1}^{v_{t+1}} n_{i j} x_{j} & =\left(\sigma_{t}+1\right) v_{t}-\sum_{j=1}^{v_{t+1}} n_{i j} \eta_{j}(\mathscr{B}) \tag{3.3}\\
& \leqq t-1+\left(s-\varepsilon_{1}\right) v_{1}+\cdots+\left(s-1-\varepsilon_{t-1}\right) v_{t-1}+\sigma_{t} v^{\prime} \\
& =t-1+\sigma_{1} v_{1}+\cdots+\sigma_{t} v_{t} .
\end{align*}
$$

Hence from (3.1) and (3.3) we have the required result.

Theorem 3.2. If there exists an $\{f, m ; t, s\}$-max-hyper which attains the upper bound (2.6) where $m=t-1+s v_{1}+(s-1) v_{2}+\cdots+(s-1) v_{k-1}+\left(\sigma_{k}^{*}-1\right) v_{k}+\sum_{i=k+1}^{t} \sigma_{i}^{*} v_{i}$ and $\sigma_{i}^{*}(i=k, k+1, \cdots, t)$ is an integer given in (2.14), then there exists an $\left\{f^{*}, m^{*}\right.$; $t, s\}$-max-hyper which attains the upper bound (2.15) where $m^{*}=t-1+\sigma_{k}^{*} v_{k}-\delta_{k}+$ $\sum_{i=k+1}^{t} \sigma_{i}^{*} v_{i}$.

Proof. If there exists an $\{f, m ; t, s\}$-max hyper which attains the upper bound (2.6), there exists a set of nonnegative integers $\left\{x_{j}\right\}\left(j=1,2, \cdots, v_{t+1}\right)$ which satisfy the conditions $\sum_{j=1}^{v_{t+1}} x_{j}=f$ and $\max _{i} \sum_{j=1}^{v_{t+1}} n_{i j} x_{j}=m$. Let α be an integer such that $\sum_{j=1}^{v_{t+1}} n_{\alpha j} x_{j}=$ m. Consider an integer l such as $n_{\alpha l}=1$ and let $y_{j}=x_{j}+k-1-\delta_{k}$ or $y_{j}=x_{j}$ according as $j=l$ or not. Then we have

$$
\begin{align*}
\sum_{j=1}^{v_{t+1}} y_{j}= & k-1-\sigma_{k}+\sum_{j=1}^{v_{t+1}} x_{j} \tag{3.4}\\
= & t-1+s v_{2}+(s-1) v_{3}+\cdots+(s-1) v_{k} \\
& +k-1-\delta_{k}+\left(\sigma_{k}^{*}-1\right) v_{k+1}+\sum_{i=k+1}^{t} \sigma_{i}^{*} v_{i+1} \\
= & t-1+\sigma_{k}^{*} v_{k+1}-\delta_{k}+\sum_{i=k+1}^{t} \sigma_{i}^{*} v_{i+1}
\end{align*}
$$

since $v_{k+1}=k-1+s v_{2}+(s-1) v_{3}+\cdots+(s-1) v_{k}$.
We also have

$$
\begin{align*}
\sum_{j=1}^{v_{t+1}} n_{i j} y_{j} \leqq & k-1-\delta_{k}+\sum_{j=1}^{v_{t+1}} n_{i j} x_{j} \tag{3.5}\\
\leqq & t-1+s v_{1}+(s-1) v_{2}+\cdots+(s-1) v_{k-1} \\
& +k-1-\delta_{k}+\left(\sigma_{k}^{*}-1\right) v_{k}+\sum_{i=k+1}^{t} \sigma_{i}^{*} v_{i} \\
= & t-1+\sigma_{k}^{*} v_{k}-\delta_{k}+\sum_{i=k+1}^{t} \sigma_{i}^{*} v_{i}
\end{align*}
$$

for all $i=1,2, \cdots, v_{t+1}$.
From (3.4) and (3.5), it follows that there exists a set of integers $\left\{y_{j}\right\}\left(j=1,2, \cdots, v_{t+1}\right)$ such that $\sum_{j=1}^{v_{t+1}} y_{j}=t-1+\sigma_{k}^{*} v_{k+1}-\delta_{k}+\sum_{i=k+1}^{t} \sigma_{i}^{*} v_{i+1}$ and $\sum_{j=1}^{v_{i+1}} n_{i j} y_{j} \leqq t-1+\sigma_{k}^{*} v_{k}-\delta_{k}+$ $\sum_{i=k+1}^{t} \sigma_{i}^{*} v_{i}$. Hence there exists an $\left\{f^{*}, m^{i=k+1} ; t, s\right\}$-max hyper which attains the upper
 the proof.

Theorem 3.3. Let σ be a nonnegative integer and let δ be an integer such that $0 \leqq \delta \leqq t-1$. Then, there exists $a\left\{f, \sigma v_{t}+\delta ; t, s\right\}$-max-hyper which attains the bound (2.16).

Proof. Let $x_{1}=\sigma+\delta$ and $x_{j}=\sigma$ for $j=2,3, \cdots, v_{t+1}$. Then we obtain

$$
\sum_{j=1}^{v_{t+1}} x_{j}=\sigma v_{t+1}+\delta \quad \text { and } \quad \sum_{j=1}^{v_{t+1}} n_{i j} x_{j} \leqq \sigma v_{t}+\delta \quad\left(1 \leqq i \leqq v_{t+1}\right) .
$$

Hence we have the required result.

4. An upper bound on \boldsymbol{k} for $\mathbf{a}\{\boldsymbol{k}, \boldsymbol{m} ; \mathbf{t}, \mathrm{s}\}$-min \cdot hyper
 for given integers $\boldsymbol{m}, \boldsymbol{t}$ and \mathbf{s}

Let $\sigma_{i}(i=1,2, \cdots, t)$ be any integers such that $0 \leqq \sigma_{1} \leqq s, 0 \leqq \sigma_{i} \leqq s-1(2 \leqq i \leqq t-1)$ and $\sigma_{t} \geqq 0$ and let

$$
\begin{equation*}
m=\sigma_{1} v_{1}+\sigma_{2} v_{2}+\cdots+\sigma_{t} v_{t} \tag{4.1}
\end{equation*}
$$

Theorem 4.1. Let m be an integer given by (4.1) and let (K,W) be a $\{k, m$; $t, s\}$-min.hyper in $\operatorname{PG}(t, s)$. Then

$$
k \geqq \sigma_{1} v_{2}+\cdots+\sigma_{t} v_{t+1}
$$

Proof. Let (K, W) be a $\{k, m ; t, s\}$-min-hyper with weight $W=\left(w_{1}, w_{2}, \cdots, w_{q}\right)$ in $P G(t, s)$ where $k=\sum_{r=1}^{q} w_{r}$ and $K=\left\{P_{1}, P_{2}, \cdots, P_{q}\right\}$. We shall prove this theorem by induction on t.
(i) The case $t=2$. Let P_{γ} be a point in K, then it follows from $\min _{i} \sum_{j} w_{l_{j}}=\sigma_{1}+\sigma_{2} v_{2}$ that $k \geqq\left(\sigma_{1}+\sigma_{2} v_{2}\right)(s+1)-s w_{\gamma}=\sigma_{1} v_{2}+\sigma_{2} v_{3}+\left(\sigma_{2}-w_{\gamma}\right) s$ for $\gamma=\stackrel{i}{1}, 2, \cdots, k$. If there exists an integer γ such that $w_{\gamma} \leqq \sigma_{2}$, then $k \geqq \sigma_{1} v_{2}+\sigma_{2} v_{3}$. If $w_{\gamma} \geqq \sigma_{2}+1$ for all γ and $q=v_{3}$, then it follows from $0 \leqq \sigma_{1} \leqq s$ that $k \geqq v_{3}\left(\sigma_{2}+1\right)>\sigma_{1} v_{2}+\sigma_{2} v_{3}$. If $w_{\gamma} \geqq \sigma_{2}+1$ for all γ and $q<v_{3}$, then there exists a point Q in $P G(t, s)$ which is not contained in K. Consider $s+1$ lines in $P G(2, s)$ passing through the point Q. Then we obtain

$$
k \geqq\left(\sigma_{1}+\sigma_{2} v_{2}\right)(s+1) \geqq \sigma_{1} v_{2}+\sigma_{2} v_{3} .
$$

Hence Theorem 4.1 holds in this case.
(ii) The case $t=n+1$. Suppose Theorem 4.1 is true in the case $t=n$. We shall prove Theorem 4.1 is true in the case $t=n+1$. Let $F \cap H_{i}=\left\{P_{l_{i j}}: j=1,2, \cdots, \pi_{i}\right\}$ $\left(i=1,2, \cdots, v_{t+1}\right)$ for a hyperplane H_{i} in $P G(t, s)$. Consider α such that $\sum_{j=1}^{\pi_{a}} w_{l_{\alpha j}}=$ $\sum_{i=1}^{n+1} \sigma_{i} v_{i}$ Let $G_{i}\left(i=1,2, \cdots, v_{n+1}\right)$ be an $(n-1)$-flat contained in H_{α} and let $F \cap G_{i}=$ $\left\{P_{a_{i j}}, j=1,2, \cdots, \lambda_{i}\right\}$. Using an argument similar to the proof of Theorem 2.2, we have

$$
\min _{i} \sum_{j} w_{a_{i j}} \leqq \sum_{i=1}^{n} \sigma_{i+1} v_{i}
$$

Let β be an integer such that $\sum_{j=1}^{\lambda_{\beta}} w_{a_{\beta J}} \leqq \sum_{i=1}^{n} \sigma_{i+1} v_{i}$. Using an argument similar to the proof of Theorem 2.2, we have

$$
\begin{aligned}
k=\sum_{r=1}^{q} w_{r} & \geqq \sum_{j=1}^{\lambda_{\beta}} w_{a_{\beta j}}+\sum_{j=1}^{s+1}\left\{\sum_{i=1}^{n+1} \sigma_{i} v_{i}-\sum_{i=1}^{\lambda_{\beta}} w_{a_{\beta j}}\right\} \\
& \geqq \sum_{i=1}^{n+2} \sigma_{i} v_{i+1}
\end{aligned}
$$

This completes the proof.

Acknowledgment

The author would like to express his thanks to Prof. Noboru Hamada for his encouragement and his valuable suggestions.

References

[1] A. Barlotti, Sui $\{k ; n\}$-archi di un piano lineare finito, Boll. Un. Mat. Ital. 11 (1956), 553556.
[2] N. Hamada and F. Tamari, On a geometrical method of construction of maximal t-linearly independent sets, J. Combinatorial Theory (A) 25 (1978), 14-28.
[3] F. Tamari, A note on the construction of optimal linear codes, to appear.

