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Abstract

Griesmer [6] gave two methods (cf. (i) and (ii) of Theorem 5 in his paper) of constructing
(n, k, d; 2)-codes which achieve the Griesmer’s lower bound for some given integers k and d.
Theorem 5-(ii) due to Griesmer [6] was generalized by many authors. The purpose of this note
is to generalize Theorem 5-(i) for binary codes to s-ary codes using a flat in a finite projective
geometry and a r-linearly independent set where s is a prime or prime power.

1. Introduction

Let V(n; s) be an n-dimensional vector space (consisting of column vectors) over
a Galois field GF(s) of order s where n is a positive integer and s is a prime or prime
power. A k-dimensional subspace C of V(n; s) is said to be an (n, k, d; s)-code (or an
s-ary linear code with code length n, k information symbols and the minimum distance
(Hamming distance) d if the minimum distance of the code C is equal to d. In this

paper, we shall consider the following problem:

ProBLEM A. Find a liner code C whose code length n is minimum among (n,

k, d; s)-codes for given integers k, d and s.

A lower bound for the code length n of Problem A was given by Griesmer [6] for
the case s=2 and by Solomon and Stiffler [17] for the general case. Hence in order
to obtain a solution of Problem A for given integers k, d and s, it is sufficient to obtain
an (n, k, d; s)-code which achieves the Griesmer’s lower bound (inr the case s=2) or
the Solomon-Stiffler’s lower bound (in the general case) for given integers k, d and s
in the case where there exists such a code.

Griesmer [6] gave two methods (cf. (i) and (ii) of Theorem 5 in his paper) of

" constructing (n, k, d; 2)-codes which achieved the Griesmer’s lower bound for some
given integers k and d. Theorem 5-(ii) due to Griesmer [6] was generalized by many
authors (cf. Solomon and Stiffler [17], Baumert and McEliece [1], Belov [2], Hamada
and Tamari [10-12] and so on). The purpose of this note is to generalize Theorem 5—(i)
for binary codes to s-ary codes.
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2. Preliminary results

It is well known (cf. Appendix) that there are v, points and v, hyperplanes in a
finite projective geometry PG(k—1, s) of k—1 dimensions where k=3 and v, =(s* —1)/
(s—1). After numbering v, points and v, hyperplanes in PG(k—1, s), respectively, in
some way, we shall denote v, points and v, hyperplanes in PG(k—1, s) by Q; (j=1,
2,...,v)and H, (i=1, 2,..., v,), respectively. Let

N=”n”” (l=1, 2,..., Uk,j=1, 2,..., Uk)

be the incidence matrix of v, hyperplanes H; (i=1, 2,..., v,) in PG(k—1, s) and v, points
Q;(j=1,2,...,v)in PG(k—1, s) where

1, if the ith hyperplane H; contains the jth point Q;,

nij=

0, otherwise.

Hamada and Tamari [11] have shown that Problem A is equivalent to the following
linear programming, that is, there is a one-to-one correspondence between solutions
(i.e., linear codes) of Problem A and solutions (i.e., vectors) of Problem B (cf. McCluskey
[14] and Griesmer [6] for the case 5=2).

ProBLEM B. Find a vector xT=(x, x,,..., x,,) of nonnegative integers x; (j=1,

, o ‘
2,..., ) that minimizes n= zk: x; subject to the following inequality:
: ~

3 (I—npx;zd  (i=1,2,...,0) @.1)
Jj=1
for given integers k,' d and s.
Any positive integer d can be expressed uniquely as follows:
d=1+05+6,5+0,5%+ - +0,_ s, 2.2)

using’ given integers k and s where 6,’s are integers such that 0<6,<s—1 for i=0,
1,...,k—2 and 6,_,>0. Using integers 6,’s in (2.2), the lower bound for the code
length n obtained by Griesmer [6] and Solomon and Stiffler [17] can be also expressed
as follows (cf. Hamada and Tamari [117).

THeOREM 2.1. If d is expressed by (2.2), then
3 X, 2k+000, +0,0,++ +0;_ v, (2.3)
=T

for any vector x of nonnegative integers x; (j=1,2,..., v,) which satisfy condition (2.1)
where v;=(s*—1)/(s—1) for i=1, 2,..., k and n= vzk X;.
=1
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Hence in order to obtain a solution of Problem A for given integers k, d and s,
it is sufficient to obtain a vector x of nonnegative integers x; (j=1, 2,..., v,) which satisfy
condition (2.1) and achieves the lower bound (2.3) in the case where there exists such

a vector x.

3. Generalization of Theorem 5-(i) due to Griesmer

Let k be any given integer such that k=3 and let s be any given prime or prime
power. In this section, we shall denote v, points in PG(k—1, s) by ¢; (j=1, 2,..., 1)
instead of Q; (j=1, 2,..., vy) in Section 2 where {¢, ¢,,..., ¢, J(=C(k, s)) is a set of
v, nonzero vectors in V(k; s) given by (A.1) in Appendix. Let

W,={c: B,c=0 over GF(s), c e C(k, s)} 3.1)

forr=2,3,..., k—1and let W,=C(k, s) where B,=[0,_,,: I;_,], 0,,, is an m x r zero
matrix and I,, is an m x m unit matrix. Then W, is a (r—1)-flat in PG(k—1, s) con-
sisting of v, vectors ¢, ¢T=(cy, ¢,..., ¢), in C(k, s) such that ¢, ; =c, . ,=--=¢;,=0.

A collection, S={d,, d,,..., d,,}, of m vectors in V(r; s) is said to be a t-linearly
independent set or an L(r, s)-set with length m if no ¢ vectors of them are linearly de-
pendent over GF(s), where 2<t<min{r, m}. An L(r, s)-set with length m is maximal
if there exists no other L(r, s)-set with length m’>m. The length m of the maximal
L(r, s)-set is denoted by M(r, s). (cf. Hamada and Tamari [9]).

It is well known that in the special case t=r, r+1SM/(r, s)<r+s—1 for any
integers » and s. Hence there exists an L,(r, s)-set with length m if r + 1< m < M(r, s).
Let » and m be any integers such that 2<r<k and r+1Em<M,(r, 5s) and let S=
{d,, d,,...,d,} be an L(r, s)-set with length m. Then there exists a unique vector
e;, el =(ey, €,..-, y), in C(k, s) for each integer i such that (a) e;,,,=¢;,4,="=
ez =0 and (b) eT ~(d], 0, 0,..., 0) where a ~b means that there exists some nonzero
element ¢ in GF(s) such that a=¢b. Let

Er,m={e15 e25~"a em} (32)

for given integers r and m. Then E, ,,c W,. The following theorem is a generalization
of the Griesmer’s result in the case s=2 (cf. Theorem 5-(i) in his paper).

THEOREM 3.1. Let k be any integer such that k=3 and let s be any prime or

prime power. If d is an integer which can be expressed as follows:
k=2 ' '
d=1+00+ Z ('S_‘l)sl"‘ek_lsk_l (3.3)
I=r=1

using some integers r, 0y and 0, _, such that

2<r<k,0<0,<M/r,s)—r and 6,_,20,  (3.4)
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then the vector x whose jth component (1<j=<v,) is given by

Or-1» ife;e W.—E, 00
x;= (3.5)
0._.+1, otherwise
is a solution of Problem B for given integers k, d and s, where W, and E, ,, are sets

given by (3.1) and (3.2), respectively.

REMARK. In the special case r=k, (3.3) means that
d=1+0¢+0,_s*! (3.3)

and W, is a set of all vectors in C(k, s).

PROOF. Since |W,—E, . q,|=0,—(r+8,), it follows from (3.5) and v;=(s'—1)/
(s—1) for i=1, 2,..., k that

2 %=00 1+ D= (5= +00)

k—1
=k+0001+ Z (S_I)Ui'l"ek_.lvk, (3.6)

which shows that the x;’s given by (3.5) achieve the lower bound (2.3). Since the
x;’s given by (3.5) are nonnegative integers, it is sufficient to show that those integers
satisfy condition (2.1).

Let H; (i=1, 2,..., v;) be v, hyperplanes in PG(k—1, s) given by (A.3) in Appendix
and let us denote k; by

hiT =(hi1, hi2a---> hik) (3-7)

fori=l1, 2,..., v,.

(i) In the case where i is an integer such that (h;q, hy,..., B;)=(0, 0,..., 0), it
follows from (3.1) that ATc;=0 over GF(s) (i.e., n;;=1) for any vector ¢; in W,
Hence we have

21(1 ”i-)x-— 4 1( lj)( k—1 l)_—s —l+0 lsk_1; l
j= ]/ E 1 n 0 + k
because
Z ( Iii) Up—Ug-1=S L (38)

Jj=1
Hence condition (2.1) holds in this case.

(i) In the case where i is an integer such that (h;q, hys,..., h;)#(0, 0,..., 0), there
are (v,—v,-,) vectors ¢; in C(k, s) such that hfc;#0 over GF(s) (i.e., n;;=0) and
there are (v,—v,_,) vectors ¢; in W, such that hTc;#0 over GF(s). 'Hence there are
(s*=1—s""1) vectors ¢; in C(k, s)— W, such that hfc;#0 over GF(s). Since
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k=2
> (s—Dst=sk-1—g-1

=p—

it follows from (3.5) and (3.8) that
Vi k=2
z (l_nij)Xj=0k_lsk_1+{Zi+ . Zl(s—l)sl} (3-9)
=1 =r=

where z; denotes the number of vectors ¢ in E,, .4, such that ATc#0 over GF(s).
Hence it is sufficient to show that z;=60,+ 1 in order to show that condition (2.1) holds.

Since any r vectors in E, , . 4, are linearly independent over GF(s), there are at most
r—1 vectors ¢ in E, , .4, such that AT¢=0 over GF(s). This implies that z;>(r+0,)—
(r—1)=604,+1. This completes the proof.

From Theorem 2.1 due to Hamada and Tamari [11], we have

THEOREM 3.2. For any integers k, d and s which satisfy conditions in Theorem
3.1, there exists an (n, k, d; s)-code which achieves the Solomon-Stiffler’s lower bound.

Since M,(r, s)=r+1 for any integers r and s, we have

COROLLARY 3.3. In the case 0,=0 or 1, there exists an (n, k, d; s)-code which
achieves the Solomon-Stiffler’s lower bound if d can be expressed as (3.3) using
some integers r, k, s and 0,_, such that 2<r<k and 6,_,=0.

In the special case s=2, Corollary 3.3 coincides with Theorem 5-(i) due to Griesmer
[6]. (cf. Theorem 7.1 of Hamada and Tamari [10])

ExaMpLE 3.1. In the special case r=2, it follows that M,(2, s)=s+1. Hence
condition (3.4) can be expressed as follows:

r=2, 0<0,<s—1 and 6,_,=0.

This implies that there is no restriction with respect to 8, and 6, _, in the case r=2.

ExaMPLE 3.2. In the case r=3, it is well known (cf. Bose [3]) that M3(3, s)=s+2
or s+1 according as s is a power of 2 (i.e., s=2™ for some integer m=1) or not. Hence
condition (3.4) means that

?'=3, Oéeoés_l and 0](_120
or
7=3, 0§00§S—2 and 9;:..1__2_0

according as s is a power of 2 or not.
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ExAMPLE 3.3. In the case r=4 and k>4, it is well known (cf. Segre [15, 16]
and Gulati and Kounias [7]) that M (4, 2)=M,(4, 3)=5 and M4, s)=s+1 for any
prime power s=4. Hence condition (3.4) implies that

r=4, 0£60,<s—1 and 6,_,20,
r=4, 056,<s—2 and 6,_,20, or
r=4, 0£60,<5—3 and 6,_,20

according as s=2, 3 or s 24.

ExaMPLE 3.4.  Consider the case k=5, r=4 and s=5. In this case, M (4, 5)=6
and 050,<2. Let C(5, 5) be a set of (55— 1)/(5—1) nonzero vectors in V(5; 5) such
that the first component of each vector is equal to 1 (cf. Example A.1 in Appendix) and
let Wy={c: B,c¢=0 over GF(5), ¢ce C(5, 5)} where B,=(0, 0, 0, 0, 1).

In the case 0p=2 and 0,_,=0 (i.e., d=503), let E,c={e,, €,, e;, e, €5, €5}
where e{=(1, 0, 0,0, 0), eJ=(0, 1, 0, 0, 0), eI =(0, 0, 1, 0, 0), eI =(0, 0, 0, 1, 0), el =
(1, 1,1, 1,0), eI=(1, 2, 3, 4,0). Then we can obtain a (631, 5, 503; 5)-code from
Theorems 3.1 and 3.2 which achieve the Solomon-Stiffler’s lower bound.

Appendix

With the help of the Galois field GF(s), we can define a finite projective geometry
PG(t, 5) of t (22) dimensions as a set of points satisfying the following conditions:

(a) A point in PG(t, s) is represented by (v) where v is a nonzero element of
GF(s*th),

(b) Two points (v,) and (v,) represent the same point when and only when
there exists a nonzero element ¢ of GF(s) such that vy =0V,.

(¢) A pflat, 0Su<t—1, in PG(t, 5) is defined as a set of (s#*1—1)/(s—1) points
(agvot+ayw +--+ayw,) where a;’s run independently over the elements of GF(s) and
are not all simultaneously zero and v,, vi,..., v, are linearly independent elements
of GF(s**!) over the coefficient field GF(s). In the special case u=¢t—1, a (t—1)-flat
is also called a hyperplane.

It is well known that there is a one-to-one correspondence between s'+!— 1 nonzero
elements in GF(s**!) and s'*1—1 nonzero vectors in V(t+1; s) (cf. Carmichael [5D.
Hence any point in PG(t, s) can be expressed as (¢) using some nonzero vector ¢ in
V(t+1; s) where two points (c,) and (¢,) represent the same point if and only if two
vectors ¢, and ¢, are linearly dependent over GF(s), i.e., there exists a nonzero element
o of GF(s) such that ¢; =ac¢,. Since there are s— 1 nonzero elements in GF(s), there
are (s'*!'—1)/(s—1) points in PG(¢, s).

Let k be any given integer such that k>3. Then there exist v, nonzero vectors
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in V(k; s) such that the first nonzero component of each vector is equal to 1 where

v =(s*—1)/(s—1) (cf. Example A.1). After numbering those v, vectors in some
way, we shall denote v, vectors by ¢; (j=1, 2,..., v,) and let

Ck, s)={cy, €3,..., ¢, } . (A.1)

It is easy to see that (a) any two vectors in C(k, s) are linearly independent over
GF(s) and (b) for any nonzero vector ¢ in V(k; s), there exists a unique vector ¢; in
C(k, s) such that ¢ =oc; for some nonzero element o of GF(s). This implies that there
is a one-to-one correspondence between v, points in PG(k — 1, s) and v, vectors in C(k, s).
Hence in Section 3, we shall denote v, points in PG(k—1, s) by ¢; (j=1, 2,...,v)
instead of (¢;) or Q; in Section 2.

ExaMPLE A.1. In the special case k=3 and s=3, C(3,3) is a set of '13 vectors in
V(3; 3) as follows:

Cg ) €lo €11 €12 Cj3
0 0 1 1 1
1 1 1 2 2
1 2 2 1 2

Let ¢T=(2, 1, 2). Then ¢=2¢,,. Hence two points (¢) and (c,,) represent the
same point in PG(2, 3).
A pflat, 0Su<k—2, in PG(k—1, s) may be defined as a set

W={c: Be=0 over GF(s), ¢ e C(k, 5)} (A.2)

using some (k—1—yu) x k matrix B whose entries are elements of GF(s) and whose
rank over GF(s) is equal to k—1—pu. In the special case u=k—2, there are v, hyper-
planes in PG(k—1, s) and those v, hyperplanes in PG(k—1, s) can be expressed as
follows:

H;={c: hTc=0 over GF(s), c e C(k, s)} (A.3)

using some vectors h; (i=1, 2,..., v) in V(k; s) where {hy, h,,..., h, } (=H(k, 5)) is
a set of v, nonzero vectors in V(k; s) such that any two vectors in H(k, s) are linearly
independent over GF(s).

ExaMPLE A.2. In the case k=3 and s=3, let h;=c; and H;={c: hTc=0 over
GF(3), ceC(3, 3)} for i=1, 2,...,13 where ¢;’s are vectors given in Example A.1.
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Then H; (i=1, 2,...,13) are 13 hyperplanes in PG(2, 3). For example, H;={c,,
€3, Cg, Cg} and H4={C3, €5, €12, c13}’
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