L Intersectional Empty Sets (or \(\ell - IE \) Sets) and Linear Codes

Fumikazu Tamari

Department of Mathematics, Fukuoka University of Education (Received August 31, 1987)

Abstract

In this paper, we shall construct optimal linear codes using ℓ intersectional empty set (or ℓ -IE set) where ℓ is a positive integer such that $\ell \ge 2$. Furthermore, we shall study 4-IE sets in detail.

1. Introduction and summary

Let $\mathscr A$ be a family of flats in a t-dimensional finite projective geometry PG(t,s). Let ℓ be a positive integer such that $\ell \ge 2$. Then, a family $\mathscr A$ is said to be an ℓ intersectional empty set (or ℓ -IE set) if the intersection of any ℓ flats $A_1, A_2, ..., A_\ell$ in $\mathscr A$, is empty but the intersection of some $(\ell-1)$ flats $B_1, B_2, ..., B_{\ell-1}$ in $\mathscr A$, is not empty. $\mathscr A$ is also said to be a regular ℓ -IE set if all flats in $\mathscr A$ have the same dimension, i.e., $\dim(A) = v$ for all A in $\mathscr A$. Furthermore, $\mathscr A_0$ is said to be a maximal (regular) ℓ -IE set if $|\mathscr A_0| \ge |\mathscr A|$ for all (regular) ℓ -IE sets $\mathscr A$ in PG(t,s) where $|\mathscr A|$ denotes the cardinality of $\mathscr A$.

REMARK. Let $\{Q_i\}$ $(i=1, 2,..., \pi)$ be a 3-independent set in PG(2, s) and let L_i be the dual space of Q_i for $i=1, 2,..., \pi$ where $\pi=s+1$ or s+2 according as s is odd or not. Then, the set $\{L_i\}$ $(1 \le i \le \pi)$ is a maximal regular 3-IE set.

Let V(n; s) denote an *n*-dimensional vector space over a Galois field GF(s) where s is a prime or prime power. A k-dimensional subspace C of V(n; s) is called an s-ary linear code with code length n, k information symbols and the minimum distance d if the minimum distance (Hamming distance) of the code C is equal to d, and is denote by (n, k, d; s)-code.

We now consider the following problem.

PROBLEM. Find a linear code C (called an optimal linear code) whose code length n is minimum among (*, k, d, s;)-codes for given integers k, d and s.

In this paper, we shall construct optimal linear codes using ℓ -IE sets

2. Preliminaly results

Let W be a μ -flat in PG(n, s) and let b_i $(i = 1, 2, ..., \mu + 1)$ be a basis of the μ -flat W. The $(n - \mu - 1)$ -flat W which is defined by $W^* = \{h \in PG(n, s): hb_i^T = 0 \text{ over } GF(s)\}$ $(i=1, 2, ..., \mu+1)$ is called the dual space of the μ -flat W where \mathbf{a}^T denotes the transpose of \mathbf{a} . Especially the empty set will be defined as the dual space of the whole space and vice versa. Then we can easily prove the following:

PROPOSITION 1. Let V and W be any flats in PG(n, s) and let V^* and W^* be the dual space of V and W, respectively. Then

- (i) $V \subset W$ if and only if $V^* \supset W^*$
- (ii) $V^* \cap W^* = (V \oplus W)^*$ and $(V \cap W)^* = V^* \oplus W^*$ where $V \oplus W$ denotes the flats generated by V and W.

A family of t-flats $\{V_i\}$ in PG(n, s) is called a t-spread if every point in PG(n, s) belong to one and only one t-flat of $\{V_i\}$.

Let α be a primitive element of $GF(s^{n+1})$. Then every point in PG(n, s) is represented by the power α^i of α for some $i = 0, 1, ..., v_{n+1} - 1$ where $v_{n+1} = (s_{n+1} - 1)/(s - 1)$. If t+1 divides n+1, then a family of cyclically generated t-flats in PG(n, s), represented by

$$V_i = \{\alpha^{0+i}, \alpha^{\theta+i}, \dots, \alpha^{(w-1)c+i}\}$$
 $(i = 0, 1, \dots, \theta - 1)$

is a t-spread in PG(n, s) where $w = (s^{t+1} - 1)/(s - 1)$ and $\theta = (s^{n+1} - 1)/(s^{t+1} - 1)$. Since α is a primitive element of GF(q), $q = s^{t+1}$, every nonzero element of GF(q) may be represented by $\alpha^{j\theta}$ (j = 0, 1, ..., q - 2). Moreover, the set of points α^i $(i = 0, 1, ..., \theta - 1)$ may be regarded as that of PG(k, q) where k+1=(n+1)/(t+1). This implies that $\{V_i\}$ defined above can also be regarded as the set of all points of PG(k, q). Thus we have

PROPOSITION 2 (cf. [1], [6]). There exists a t-spread in PG(n, s) if and only if t+1 divides n+1. Furthermore, there exists a t-spread $\{V_i\}$ which can be regarded as the set of all points of PG(k, q) where k+1=(n+1)/(t+1).

A set L of vectors \mathbf{a}_1 , \mathbf{a}_2 ,..., \mathbf{a}_m in V(r; s) such that no t vectors of L are linearly dependent, is called a t-linearly independent set and a t-linearly independent set L_0 is said to be maximal if there exists no t-linearly independent set such that $|L| > |L_0|$. The cardinality of a maximal t-linearly independent set L_0 in V(r; s) is denoted by $M_t(r, s)$.

Attempts of obtaining $M_t(r, s)$ have been made by many research workers. But, unfortunately, $M_t(r, s)$ are partially obtained for some t, r and s but not yet completely.

PROPOSITION 3. Let m be a nonnegative integer. Then, there exists a set of m-flats Y_k^* $(k=1, 2, ..., \pi)$ in $PG(\ell(m+1)-1, s)$ such that $\dim(Y_{i_1}^* \oplus Y_{i_2}^* \oplus \cdots \oplus Y_{i_\ell}^*) = \ell m + \ell - 1$ for any flats $Y_{i_j}^*$ $(j=1, 2, ..., \ell)$ in $\{Y_k^*\}$ $(1 \le k \le \pi)$ where $\pi = M_{\ell}(\ell, s^{m+1})$.

PROOF. It follows from Proposition 2 that there exists an m-spread $\{W_n^*\}$ $(n=1, 2,..., \zeta)$ in $PG(\ell(m+1)-1, s)$ where $\zeta = (s^{\ell(m+1)}-1)/(s^{m+1}-1)$. Since each m-flat W_n^* can be regarded as a point in $PG(\ell-1, s^{m+1})$, there exists a maximal ℓ -linearly independent set $\{Y_k^*\}$ $(k=1, 2,..., \pi)$ in $\{W_n^*\}$, i.e., $\dim(Y_{i_1}^* \oplus Y_{i_2}^* \oplus \cdots \oplus Y_{i_\ell}^*) = \ell m + \ell - 1$ for any flats $\{Y_{i_j}^*\}$ $(j=1, 2,..., \ell)$ in $\{Y_k^*\}$. $\{Y_k^*\}$ $(k=1, 2,..., \pi)$ is a reguired set. This completes the proof.

COROLLARY. Let Y_k be the dual space of Y_k^* $(1 \le k \le \pi)$ which was obtained in Proposition 3. Then, the set $\{Y_k\}$ $(1 \le k \le \pi)$ is a regular ℓ -IE set with cardinality π in $PG(\ell(m+1)-1, s)$.

PROPOSITION 4. A necessary condition for $\mu_1, \mu_2, ..., \mu_\ell$ that there exists μ_i -flats W_i $(i=1, 2, ..., \ell)$ in PG(k-1, s) such that $W_1 \cap W_2 \cap \cdots \cap W_\ell = \phi$, is that $\mu_1, \mu_2, ..., \mu_\ell$ satisfy the following condition:

$$\mu_1 + \mu_2 + \dots + \mu_{\ell} \le (\ell - 1)k - \ell.$$

PROOF. Let W_i^* $(i=1, 2, ..., \ell)$ be the dual space of W_i in PG(k-1, s). Then, it is easily shown that $\sum_{i=1}^{\ell} \{\dim(W_i^*)+1\} \ge k$. Since $\dim(W_i^*)=k-2-\mu_i$ for $i=1, 2, ..., \ell$, we have the required result.

Let d be a positive integer. Let us denote by $\theta_0 + \theta_1 s + \dots + \theta_{k-2} s^{k-2}$ and θ_{k-1} , the remainder and the quotient of d-1, respectively, when it is divided by s^{k-1} , i.e.,

$$d = 1 + \theta_0 + \theta_1 s + \dots + \theta_{k-2} s^{k-2} + \theta_{k-1} s^{k-1}$$
 (1)

where θ_i 's are integers satisfying $0 \le \theta_i \le s-1$ for i=0, 1, ..., k-2 and $\theta_{k-1} \ge 0$.

PROPOTION 5 (cf. [2]). For any (n, k, d; s)-code,

$$n \ge k + \theta_0 v_1 + \theta_1 v_2 + \dots + \theta_{k-1} v_k \tag{2}$$

if d is expressed by (1) where $v_i = (s^i - 1)/(s - 1)$ for i = 1, 2, ..., k.

The lower bound (2) on n is called the Solomon-Stiffier bound.

3. *l-IE* sets and linear codes

Put $\varepsilon_i = s - 1 - \theta_i$ for i = 0, 1, ..., k - 2 where θ_i 's are integers given in (1). Let \mathscr{B} be a set which consists of ε_{μ} μ -flats V_i^{μ} $(0 \le \mu \le k - 2, i = 0, 1, ..., \varepsilon_{\mu})$ where V_i^{μ} 's are not necessarily distinct. Given ε_i (i = 0, 1, ..., k - 2), let us denote by $\mathscr{F}(\varepsilon_0, \varepsilon_1, ..., \varepsilon_{k-2})$ the family of all such that \mathscr{B} 's

Note that if there exists an ℓ -IE set in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$, then there exists an ℓ -IE set in $\mathcal{F}(\varepsilon_0, \varepsilon_1, ..., \varepsilon_{k-2})$ for all ε_0 (cf. Lemma 4.1 in [2]). On the other hand, it is known (cf. [3], [4]) that in order to obtain linear codes attaining the lower bound (2), it is sufficient to obtain ℓ -IE sets ($\ell \ge 2$) in PG(t, s). Therefore, in this paper, we shall study ℓ -IE sets in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$ for some ε_i ($1 \le i \le k-2$) satisfying a certain condition.

Let E(k, s) be a collection of ordered sets $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$ of integers ε_i such that $0 \le \varepsilon_i \le s-1$ for i=1, 2, ..., k-2. Consider a subset $E_t(k, s)$ of E(k, s) for some t=0, 1, ..., k-2 satisfying the following condition:

(a)
$$\sum_{i=1}^{k-2} \varepsilon_i \leq t+1$$

or (3)

(b)
$$\sum_{i=1}^{k-2} \varepsilon_i \ge t+2$$
, $\beta_1 + \beta_2 + \dots + \beta_{t+2} \le (t+1)(k-1) - 1$

where β_i 's (i=1, 2, ..., t+2) are the first t+2 integers in the following series:

$$k-2, k-2, \dots, k-2;$$
 $k-3, k-3, \dots, k-3; \dots; \underbrace{1, 1, \dots, 1}_{\epsilon_1}$

It is easy to see that

$$E_0(k, s) \subset E_1(k, s) \subset E_2(k, s) \subset \cdots$$

and

$$E_i(k, s) = E(k, s)$$
 for $j \ge k - 2$.

So we shall study ℓ -IE sets in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$ such that $2 \le \ell \le k-2$.

PROPOSITION 6 (cf. [2]). There exists an ℓ -IE set in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$, then $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2}) \in E_{\ell-2}(k, s) - E_{\ell-3}(k, s)$ where $E_{-1}(k, s) = \phi$.

Put $k = \ell(m+1) - q$ $(m \ge 0, 0 \le q \le \ell - 1)$ and let $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$ be an element in $E_{\ell-2}(k, s) - E_{\ell-3}(k, s)$. Then it follows from (3) that $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$ must be an ordered set such that $0 \le \sum_{i=\delta+1}^{k-2} \varepsilon_i \le \ell - 1$ where $\delta = [(\ell k - k - 1)/\ell] = (\ell - 1)m + \ell - 2 - q$ and [x] denotes the greatest integer not exceeding x.

Theorem 1. Let $(\varepsilon_1, \, \varepsilon_2, ..., \, \varepsilon_{k-2})$ be an element in $E_{\ell-2}(k, \, s) - E_{\ell-3}(k, \, s)$ such that $\sum_{i=\delta+1}^{k-2} \varepsilon_i = 0$. If $(\varepsilon_1, \, \varepsilon_2, ..., \, \varepsilon_{k-2})$ satisfies the following condition:

$$\sum_{j=z}^{\delta-2} \varepsilon_j^* + \varepsilon_{\delta-1} + \varepsilon_{\delta} \leq M_{\ell}(\ell, s^{m+1}), \tag{4}$$

where $z = [\delta/2]$, $\varepsilon_i^* = \max \{ \varepsilon_i, \varepsilon_{\delta-1-i} \}$ $(i = z, z+1,..., \delta-2)$ and $\varepsilon_z^* = \varepsilon_z$ if δ is odd, then there exists an ℓ -IE set in $\mathcal{F}(0, \varepsilon_1,..., \varepsilon_{k-2})$.

PROOF. Two cases must be considered, i.e., q=0 and $1 \le q \le \ell - 1$ where $k = \ell(m+1) - q$.

Case (I) when q=0 (i.e., $k=\ell(m+1)$). Let Y_i ($i=1, 2, ..., \pi$) be $\{(\ell-1)m+\ell-2\}$ -flats obtained in Corollary.

We prove this theorem about only the case when δ is even, because the proof in other case is similar to the case when δ is even.

First, choose μ -flats V^{μ}_{j} ($\mu = \delta - 1$, δ ; j = 1, 2,..., ε_{μ}) in Y_{k} (k = 1, 2,..., t) where $t = \varepsilon_{\delta} + \varepsilon_{\delta - 1}$. In the case $\varepsilon_{i} < \varepsilon_{\delta - 1 - i}$ ($z \le i \le \delta - 2$), let V^{i}_{j} and $V^{\delta - 1 - i}_{j}$ be an i-flat and a ($\delta - 1 - i$)-flat in Y_{n} such that $V^{i}_{j} \cap V^{\delta - 1 - i}_{j} = \phi$ for j = 1, 2,..., ε_{i} . Let $V^{\delta - 1 - i}_{j}$ be a ($\delta - 1 - i$)-flat in Y_{t} for $j = \varepsilon_{i} + 1$, $\varepsilon_{i} + 2$,..., $\varepsilon_{\delta - 1 - i}$. In the case $\varepsilon_{i} \ge \varepsilon_{\delta - 1 - i}$, we can also choose flats V^{μ}_{j} ($1 \le \mu \le \delta$; j = 1, 2,..., ε_{μ}) which are elements of an ℓ -IE set. The inequality (4) implies that there exists an ℓ -IE sets in $\mathcal{F}(0, \varepsilon_{1}, ..., \varepsilon_{k-2})$.

Case (II) when $1 \le q \le \ell - 1$ (i.e., $k = \ell(m+1) - q$). Let G be an $\{\ell(m+1) - q - 1\}$ -flats in $PG(\ell(m+1) - 1, s)$. Choose $(\mu + q)$ -flats $V_j^{\mu + q}$ $(1 \le \mu \le k - 2, j = 1, 2, ..., \varepsilon_{\mu})$ contained in $PG(\ell(m+1) - 1, s)$ which were obtained in Case (I). Put $U_j^{\mu} = G \cap V_j^{\mu + q}$ for all μ and j. Then, $\mathscr{B} = \{U_j^{\mu}\}$ $(1 \le \mu \le k - 2; j = 1, 2, ..., \varepsilon_{\mu})$ is a required set, because G can be identified with $PG(\ell(m+1) - q - 1, s)$. This completes the proof.

Put $k = \ell(m+1) - q$ $(m \ge 0, 0 \le q \le \ell - 1)$ and $\delta = [(\ell k - k - \ell)/\ell] = (\ell - 1)m + \ell - 2 - q$. In the case $\sum_{i=\delta+1}^{k-2} \varepsilon_i = p$ (≥ 1) , let us denote by $\delta + e_i$ (i = 1, 2, ..., p) p integers such that

$$\overbrace{\delta+1,\,\delta+1,\ldots,\,\delta+1}^{\epsilon_{\delta+1}};\,\overbrace{\delta+2,\,\delta+2,\ldots,\,\delta+2}^{\epsilon_{\delta+2}};\ldots;\,\overbrace{k-2,\,k-2,\ldots,\,k-2}^{\epsilon_{k-2}}$$

where $1 \leq e_1 \leq e_2 \leq \cdots \leq e_n \leq k-2$.

Put $e_1 + e_2 + \cdots + e_p = e$. Then, we have

THEOREM 2. Let $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$ be an element in $E_{\ell-2}(k, s) - E_{\ell-3}(k, s)$ such that $1 \leq \sum_{i=\delta+1}^{k-2} \varepsilon_i (=p) \leq \ell-2$. If $\ell-p \geq 2$, $\tau = [e/(\ell-p)] \geq 1$ and $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$ satisfies the following condition:

$$\sum_{i=z}^{\delta-e-2} \varepsilon_i^* + \sum_{i=\delta-e-1}^{\delta} \varepsilon_i + p \le M_{\ell}(\ell, s^{m+1})$$
 (5)

and

$$\sum_{i=\delta-e+1}^{\delta} \varepsilon_i \leq M_{\ell-p}(\ell-p, s^{r})$$
 (6)

where $z = [(\delta - e)2]$, $\varepsilon_i^* = \max \{\varepsilon_i, \varepsilon_{\delta - e - 1 - i}\}$ $(i = z, z + 1, ..., \delta - e - 2)$ and $\varepsilon_z^* = \varepsilon_z$ if $\delta - e$ is odd, then there exists an ℓ -IE set in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$.

THEOREM 3. Let $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$ be an element in $E_{\ell-2}(k, s) - E_{\ell-3}(k, s)$ such

that $\sum_{i=\delta+1}^{k-2} \epsilon_i = \ell-1$. If $(\epsilon_1, \epsilon_2, ..., \epsilon_{k-2})$ satisfies the following condition:

$$\sum_{j=z}^{\nu-2} \varepsilon_j^* + \varepsilon_{\nu-1} + \varepsilon_{\nu} + \ell - 1 \le M_{\ell}(\ell, s^{m+1}), \tag{7}$$

where $v = \delta - e_{\ell}$, $z = \lfloor v/2 \rfloor$ and $\varepsilon_i^* = \max \{ \varepsilon_i, \varepsilon_{v-1-i} \}$ (i = z, z+1, ..., v-2) and $\varepsilon_z^* = \varepsilon_z$ if v is odd, then there exists an ℓ -IE set in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$.

In order to Theorems 2 and 3, we prepare a lemma. Let V_i (i=1, 2,..., p) and V_j $(j=p+1, p+2,..., \ell)$ are $\{(\ell-1)m+\ell-2+e_i\}$ -flats and $\{(\ell-1)m+\ell-2-e_j\}$ -flats in PG $(\ell(m+1)-1, s)$, respectively, such that $V_1 \cap V_2 \cap \cdots \cap V_p \cap V_{p+1} \cap \cdots \cap V_\ell = \phi$. Then it follows from Proposition 4 that e_i $(i=1, 2,..., \ell)$ must be integers satisfying the following condition:

$$e_1 + e_2 + \dots + e_n \le e_{n+1} + e_{n+2} + \dots + e_{\ell}$$
 (8)

Let e_i $(i=1, 2, ..., \ell-1)$ be integers such that $1 \le e_1 \le e_2 \le ... \le e_p \le m$ and $0 \le e_{p+1} \le e_{p+2} \le ... \le e_{\ell-1}$. Put $e_\ell = \max \{(e_1 + e_2 + ... + e_p) - (e_{p+1} + e_{p+2} + ... + e_{\ell-1}), e_{\ell-1}\}$. Then, it is easy to see that $e_1, e_2, ..., e_\ell$ are integers which satisfy the inequality (8) and $e_{p+1} \le e_{p+2} \le ... \le e_{\ell-1} \le e_\ell$. Put $e_1 + e_2 + ... + e_p = e$ and $\lfloor e/(\ell-p) \rfloor = \tau$. Then we have

LEMMA. If $\tau \ge 1$ and $\ell - p \ge 2$, then there exists an ℓ -IE set consists of $\{(\ell-1)m + \ell - 2 + e_i\}$ -flats V_i (i = 1, 2, ..., p), $\{(\ell-1)m + \ell - 2 - e_i\}$ -flats Q_j ($j = p + 1, p + 2, ..., \ell - 1$), $\{(\ell-1)m + \ell - 2 - e_\ell\}$ -flats R_k ($k = \ell, \ell + 1, ..., \lambda + p$) and $\{(\ell-1)m + \ell - 2 - e_\ell\}$ -flats T_n ($n = \lambda + p + 1, \lambda + p + 2, ..., \pi$) in $PG(\ell(m+1) - 1, s)$ where $e_\ell \le e$, $k = M_{\ell-p}(\ell-p, s^\tau)$, $\pi = M_{\ell}(\ell, s^{m+1})$ and $k + p \le \pi$.

PROOF. Let Y_i^* $(t=1, 2, ..., \pi)$ be m-flats given in the proof of Proposition 3. Let U_i and V_i^* be an (e_i-1) -flat and an $(m-e_i)$ -flat in Y_i^* , respectively, such that $U_i \cap V_i^* = \phi$ for i=1, 2, ..., p. Let W be the flat generated by $U_1, U_2, ..., U_p$, i.e., $W = U_1 \oplus U_2 \oplus \cdots \oplus U_p$. Then, it is easy to see that W is an (e-1)-flat where $e=e_1+e_2+\cdots+e_p$, because $\dim(Y_{i_1}^* \oplus Y_{i_2}^* \oplus \cdots \oplus Y_{i_\ell}^*) = \ell m + \ell - 1$ for any flats $Y_{i_j}^*$ $(j=1, 2, ..., \ell)$ in $\{Y_k^*\}$. Let $e=(\ell-p)\tau+f$ $(0 \le f < \ell-p)$. Then we can choose an (e-f-1)-flat W_1 and a(f-1)-flat W_2 in W such that $W_1 \cap W_2 = \phi$. Then we can obtain a set of $(\tau-1)$ -flats D_i $(i=p+1, p+2, ..., \lambda+p)$ in W_1 such that $\dim(D_{i_1} \oplus D_{i_2} \oplus \cdots \oplus D_{i_{\ell-p}}) = e-f-1 = (\ell-p)\tau-1$ for any flats $D_{i_1}, D_{i_2}, ..., D_{i_{\ell-p}}$ in $\{D_k\}$ $(i=p+1, p+2, ..., \lambda+p)$ where $\lambda = M_{\ell-p}(\ell-p, s^{\tau})$.

We now prove this lemma by separating two cases.

Case (I)
$$e - (e_{p+1} + e_{p+2} + \dots + e_{\ell-1}) > e_{\ell-1}$$
 (i.e., $e_{\ell} = e - (e_{p+1} + e_{p+2} + \dots + e_{\ell-1})$.
Put $g - p = |\{j : 0 \le e_j \le \tau - 1\}|$ and $r - g = |\{j : e_j = \tau\}|$.

- (i) Case $0 \le e_j \le \tau 1$ $(p+1 \le j \le g)$. Let B_j and F_j be an (e_j-1) -flat and a $(\tau-1-e_j)$ -flat in D_j , respectively, such that $B_j \cap F_j = \phi$ and put $Q_j^* = B_j \oplus Y_j^*$ for $j = p+1, \ p+2,..., g$.
 - (ii) Case $e_i = \tau (g + 1 \le j \le r)$. Put $Q_i^* = D_i \oplus Y_i^*$ for j = g + 1, g + 2, ..., r.
- (iii) Case $\tau+1 \leq e_j \leq u$ $(r+1 \leq j \leq \ell)$. Let F_j be a $(\tau-1-e_j)$ -flat obtained in (i) and let $\mathbf{a}_{(\sigma_j+n)}$ $(n=1,\,2,\ldots,\,\tau-e_j)$ be a basis of F_j for $j=p+1,\,\,p+2,\ldots,\,g$ where $\sigma_{p+1}=0$ and $\sigma_j=\sum\limits_{i=p+1}^{j-1} (\tau-e_i) \; (p+2 \leq j \leq g)$. Since $e_\ell=e-(e_{p+1}+e_{p+2}+\cdots+e_{\ell-1})=(\ell-p)\tau+f-(e_{p+1}+e_{p+2}+\cdots+e_{\ell-1})$ i.e., $(\ell-p)\tau=e_\ell-f+e_{p+1}+\cdots+e_{\ell-1}$ and $e_j=\tau\; (j=g+1,\,g+2,\ldots,\,r)$, it follows that $(\tau-e_{p+1})+\cdots+(\tau-e_g)+(\tau-e_{g+1})+\cdots+(\tau-e_r)+(\tau-e_{r+1})+\cdots+(\tau-e_{\ell-1})+(\tau-e_{\ell-1})+(\tau-e_{\ell-1})+(\tau-e_{\ell-1})=(\ell-p)\tau-(e_{p+1}+e_{p+2}+\cdots+e_{\ell-1})-e_\ell \; \text{implies}$

$$\sum_{i=p+1}^{g} (\tau - e_i) = (e_{\ell} - f - \tau) + \sum_{i=r+1}^{\ell-1} (e_i - \tau).$$

Put $K_i = \boldsymbol{a}_{(\sigma_i+1)} \oplus \boldsymbol{a}_{(\sigma_i+2)} \oplus \cdots \oplus \boldsymbol{a}_{(\sigma_i+e_i-\tau)}$ for $i=r+1, r+2,..., \ell-1$ and put $K_{\ell} = \boldsymbol{a}_{(\sigma_{\ell}+1)} \oplus \boldsymbol{a}_{(\sigma_{\ell}+2)} \oplus \cdots \oplus \boldsymbol{a}_{(\sigma_{\ell}+e_{\ell}-f-\tau)}$ where $\sigma_{r+1} = 0$ and $\sigma_j = \sum_{i=r+1}^{j-1} (e_i - \tau)(r+2 \le j \le \ell-1)$.

Let $Q_j^* = D_j \oplus K_j \oplus Y_j^*$ for j = r+1, r+2,..., $\ell-1$ and let $R_k^* = D_k \oplus K_\ell + W_2 \oplus Y_k^*$ for $k = \ell$, $\ell+1$,..., $\lambda+p$ and let $T_n^* = Y_n^* \oplus W$ for $n = \lambda+p+1$, $\lambda+p+2$,..., π . It is easily to see that Q_j^* $(j = p+1, p+2,..., \ell-1)$ is an $(m+e_j)$ -flat and R_k^* is an $(m+e_\ell)$ -flat. Let V_i , Q_j , R_k and T_n be the dual space of V_i^* , Q_j^* , R_k^* and T_n^* , respectively, for each i, j, k and n. Let $\mathscr{B} = \{V_i\} \cup \{Q_i\} \cup \{R_k\} \cup \{T_n\}$. Then \mathscr{B} is a required set.

Case (II)
$$e - (e_{p+1} + e_{p+2} + \dots + e_{\ell-1}) \le e_{\ell-1}$$
 (i.e., $e_{\ell} = e_{\ell-1}$).

Similary, it can be shown that Lemma also holds in this case. This completes the proof.

[PROOFS OF THEOREMS 2 and 3]. From lemma, we can easily prove Theorems 2 and 3 similary to Theorem 1. So we omit the proofs of Theorems 2 and 3.

As an application of Theorems 1, 2 and 3, we shall study 4-IE sets in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$ where $(\varepsilon_1, ..., \varepsilon_{k-2}) \in E_2(k, s) - E_1(k, s)$. Let K_p be a set of $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$ in $E_2(k, s) - E_1(k, s)$ such that $\sum_{i=\delta+1}^{k-2} \varepsilon_i = p$. Then we know that $0 \le p \le 3$.

PROPOSITION 7. For each ordered set $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$ in K_0 or K_3 , there exists a 4-IE set in $\mathcal{F}(0, \varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$.

PROOF. We prove this theorem for only K_0 , because the proof for K_3 is similar to that for K_0 .

Case (I) when q = 0 (i.e., k = 4(m+1)). It is sufficient to show that there exists a 4-1E set in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$ for the case $\varepsilon_1 = s - 1$, $\varepsilon_2 = s - 1$, ..., $\varepsilon_{3m+2} = s - 1$ and $\varepsilon_i = 0$

(i=3m+3,...,4m+2).

By computing the left hand in (4), we have

$$\sum_{j=z}^{\delta} \varepsilon_j = \sum_{j=z}^{3m+2} (s-1) = ((3m+4)/2)(s-1) \quad \text{or} \quad ((3m+5)/2)(s-1)$$

according as m is even or not, because z = (3m+2)/2 or z = (3m+1)/2 according as m is even or not.

Since $M_4(4, s^{m+1}) = s^{m+1} + 1$, $m \ge 1$ and $s \ge 2$, we have $((3m+5)/2)(s-1) \le s^{m+1} + 1$. It follows from Theorem 1 that there exists a 4-*IE* set in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$ for the case $\varepsilon_1 = s - 1$, $\varepsilon_2 = s - 1$,..., $\varepsilon_{3m+2} = s - 1$ and $\varepsilon_i = 0$ (i = 3m + 3, ..., 4m + 2).

Case (II) when $1 \le q \le 3$. The proof in this case is similar to that in Case (II) in Theorem 1. Thus we have the required results. This completes the proof.

PROPOSITION 8. Let $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$ be an element in K_1 . If $\tau \ge 2$, then there exists a 4-IE set in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$ where $\tau = [e/3]$.

PROOF. We prove this proposition about only the case when q=0, because the proof in another case is similar to that in the case (II) in Theorem 1.

In this case, we now prove this proposition by separating two cases $e-(e_2+e_3)>e_3$ or $e-(e_2+e_3)\leq e_3$ (i.e., $e_4=e-(e_2+e_3)$) or $e_3=e_4$).

(i) The case $e - (e_2 + e_3) > e_3$ (i.e., $e_4 = e - (e_2 + e_3)$).

It is sufficient to show that there exists a 4-IE set in $\mathcal{F}(0, \varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$ for $\varepsilon_1 = s-1, ..., \varepsilon_{3m+2-e_4} = s-1$, $\varepsilon_{3m+2-e_3} = 1$, $\varepsilon_{3m+2-e_2} = 1$, $\varepsilon_{3m+2+e_1} = 1$ and $\varepsilon_i = 0$ for any other integer i where $1 \le i \le k-2$. Since $\tau \ge 2$, we have $6 \le e \le m$. This implies that the left hand of (5) is less than or equall to M_4 (4, s^{m+1}). By computing left hand in (6), it follows that

$$\sum_{i=\delta-e+1}^{\delta} \varepsilon_i = (e_2 + e_3)(s-1) + 2 \le 2\tau(s-1) + 2 \le M_3(3, s^*)$$

because $M_3(3, s^{\tau}) = s^{\tau} + 2$ or $s^{\tau} + 1$ according as s is even or not.

PROPOSITION 9. Let $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$ be an element in K_1 . For $\tau = 0$, there exists a 4-IE set in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$ where $\tau = [e/3]$.

PROOF. (I) The case e=1. If $e-(e_2+e_3)>e_3$, we have $e_2=0$, $e_3=0$ and $e_4=1$ since $0 \le e_2 \le e_3 \le e_4$. Therefore, it is sufficient to show that there exists 4-IE set in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$ for the case $\varepsilon_{3m+3}=1$, $\varepsilon_{3m+2}=2$, $\varepsilon_{3m+1}=s-1, ..., \varepsilon_1=s-1$. It is noticed that this case occurs for $s \ge 3$. Since $3+2(s-1)+[(3m-1+1)/2](s-1) \le s^{m+1}+1$, we can get the required set by similar arguments mentioned in the proof of Lemma. If $e-(e_2+e_3) \le e_3$, we have $e_3 \ge e/3$, i.e., $e_3 \ge 1$. In this case, it is sufficient to prove this proposition for the case $e_2=0$ and $e_3=1$ (or $e_2=1$ and $e_3=1$). Similarly

to the above case, we can get the required set.

(II) The case e=2. The proof of this case is similar to that in the case e=1 except the case $e_2=0$, $e_3=1$ and $e_4=1$ ($s \ge 3$).

In the case case $e_2=0$, $e_3=1$ and $e_4=1$, it is sufficient to show that there exists 4-IE set in $\mathcal{F}(0,\,\varepsilon_1,\ldots,\,\varepsilon_{k-2})$ for the case $\varepsilon_{3m+4}=1$, $\varepsilon_{3m+2}=1$, $\varepsilon_{3m+1}=s-1,\ldots,\,\varepsilon_1=s-1$. Let $\{Y_i^*\}$ be flats given in Proposition 3. Let V_1^* and W^* be an (m-2)-flat and a 1-flat in Y_1^* such that $V_1^*\cap W^*=\phi$. Let us denote all the points of W^* by Q_i $(i=1,\,2,\ldots,\,s+1)$. Let $V_1^{(3m+4)}$ and $V_2^{(3m+2)}$ be the dual spaces of V_1^* and Y_2^* , respectively. Let $V_i^{(3m+1)}$ $(i=1,\,2,\ldots,\,s-1)$ be the dual space of $Y_{i+2}^*\oplus Q_i$. We can choose other flats $V_j^{(3m+2-i)}$ $(i=2,\ldots,\,3m+1,\,j=1,\ldots,\,s-1)$ in Y_j^* $(j=s+2,\,s+3,\ldots)$ so that $\{V_j^n\}$ $(1\leq\mu\leq 3m+4,\,\mu \in 3m+3,\,j=1,\,2,\ldots,\,\varepsilon_\mu)$ is a 4-IE set since $2+2(s-1)+[(3m-1)/2]\leq s^{m+1}+1$. This completes the proof.

PROPOSITION 10. Let $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{k-2})$ be an element in K_1 . For $\tau = 1$, there exists a 4-IE set in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$ where $\tau = \lceil e/3 \rceil$.

PROOF. Two cases must be considered (i.e., q = 0 and $1 \le q \le \ell - 1$)

We prove this proposition about only the case q = 0.

- (I) The case e=3. If $e-(e_2+e_3)>e_3$, then since $0 \le e_2 \le e_3$, it is sufficient to consider the following two cases, that is,
 - (a) $e_2 = 0$, $e_3 = 0$ and $e_4 = 3$
 - (b) $e_2 = 0$, $e_3 = 1$ and $e_4 = 2$

Case (a). Since e=3, we get $m \ge 3$. This shows that $3+2(s-1)+[(3m-2)/2] \cdot (s-1) \le s^{m+1}+1$. By similar arguments in the proof of lemma we can show that there exists a 4-IE set in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$ for all $(\varepsilon_1, ..., \varepsilon_{k-2})$ in K_1 .

Case (b). The proof of this case is similar to that of the case e=2 in Proposition 9. So we omit it.

If $e-(e_2+e_3) \le e_3$, then we have $e_3 \ge 1$ since $0 \le e_2 \le e_3$. On the other hand, it is sufficient to consider the case $e_3 \le 2$. This case is separated as follows:

- (a) $e_2 = 1$ and $e_3 = 1$, (b) $e_2 = 0$ and $e_3 = 2$,
- (c) $e_2 = 1$ and $e_3 = 2$, (d) $e_2 = 2$ and $e_3 = 2$.

Case (a). It is sufficient to show that there exists a 4-IE set in $\mathcal{F}(0, \varepsilon_1, ..., \varepsilon_{k-2})$ for the case $\varepsilon_1 = s - 1$, $\varepsilon_2 = s - 2$,..., $\varepsilon_{3m+1} = s - 1$, $\varepsilon_{3m+5} = 1$.

Let Y_i^* ($i = 1, 2, ..., \pi$) be an m-flat given in Proposition 3. Let V_1^* and W^* be an (m-3)-flat and a 2-flat in Y_1^* such that $V_1^* \cap W^* = \phi$. Let $\{Q_i\}$ (i = 1, 2, ..., s) be a 3-independent set W^* and let L_i (i = 1, 2, ..., s-1) be points passing through the point Q_s . Put $R_i^* = Y_{i+1}^* \oplus Q_i$, $T_i^* = Y_{s+i}^* \oplus L_i$ for i = 1, 2, ..., s-1 and put $U_j^* = Y_{(2s-1+j)}^* \oplus W^*$ for $j = 1, 2, ..., \pi - 2s + 1$. Let V_1, R_i, T_i and U_j be the dual space of V_1^* , R_i^* , T_i^* and U_j^* , respectively for all i and j. Put $V_1^{(3m+5)} = V_1, V_1^{(3m+1)} = R_i$ and $V_1^{3m} = T_i$. Let V_1^{3m-r}

(r=1, 2; j=1, 2, ..., s-1) be a (3m-r)-flat in U_n (n=1, 2, ..., 2s-2). If 3m-3 is even, then for d=1, 2, ..., z and j=1, 2, ..., s-1, let $V_j^{(3m-2-d)}$ and V_j^d be a (3m-2-d)-flat and a d-flat in U_k (k=2s-1, 2s, ..., z(s-1)+2(s-1)) such that $V_j^{(3m-2-d)} \cap V_j^d = \phi$ where z=(3m-3)/2. Since $1+4(s-1)+z(s-1) \le s^{m+1}+1$, we have the required set. We can also easily get the required set when 3m-3 is odd.

In the case (b), (c) or (d), the proof is similar to that in the above cases in this proposition. So it is omitted here.

- (II) The case e=4. If $e-(e_2+e_3) \ge e_3$, then it is sufficient to consider the following four cases, that is,
 - (a) $e_2 = 0$, $e_3 = 0$ and $e_4 = 4$, (b) $e_2 = 0$, $e_3 = 1$ and $e_4 = 3$.
 - (c) $e_2 = 0$, $e_3 = 2$ and $e_4 = 2$, (d) $e_2 = 1$, $e_3 = 1$ and $e_4 = 2$.

The proof of Case (a) or (b) is similar to that of case (a) or (b) in the case e=3. So we omit them.

Case (c). Let Y_i^* ($i=1,2,...,\pi$) be an m-flat given in Proposition 3 and let W_1^* be a 3-flat in Y_1^* . Let W^* be a 2-flat contained in W_1^* and let X be a point in W_1^* but not contained in W^* . Let $\{Q_i\}$ (i=1,2,...,s) be a 3-independent set in W^* and let L_i (i=1,2,...,s-1) be points passing through the point Q_s . Put $R_i^* = Y_{i+1}^* \oplus Q_i \oplus X$, $T_i^* = Y_{s+i}^* \oplus L_i \oplus X$ for i=1,2,...,s-1. Then, similarly to the proof of Case (a) in (I), we can get the required 4-IE set which contains R_i and T_i for i=1,2,...,s-1 where R_i and T_i denotes the dual space of R_i^* and T_i^* , respectively.

In the case (d), we can get the required 4-IE set similarly to the case (a) in the case e=4.

(III) The case e=5. The proof of this case is omitted, because it is also similar to the cases e=3 and e=4.

References

- [1] P. Dembowski, Finite geometries, Springer-Verlag, Berlin, Heidelberg, New York, 1968.
- [2] N. Hamada and F. Tamari, Construction of optimal codes and optimal fractional factorial designs using linear programming, Annals of Discrete Mathematics 6 (1980), 175–188.
- [3] N. Hamada and F. Tamari, Construction of optimal codes using flats and spreads in a finite projective geometry, European Journal of Combinatorics 3, (1982), 129-141.
- [4] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting codes, North-Holland Mathematical Library, Vol. 16, Amsterdam, 1977.
- [5] G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes, Information and Control 8 (1965), 170–179.
- [6] S. Yamamoto, T. Fukuda and N. Hamada, On finite geometries and cyclically generated incomplete block designs, J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 137-149.