L Intersectional Empty Sets (or ℓ-IE Sets) and Linear Codes

Fumikazu Tamari
Department of Mathematics, Fukuoka University of Education

(Received August 31, 1987)

Abstract

In this paper, we shall construct optimal linear codes using ℓ intersectional empty set (or $\ell-I E$ set) where ℓ is a positive integer such that $\ell \geqq 2$. Furthermore, we shall study $4-I E$ sets in detail.

1. Introduction and summary

Let \mathscr{A} be a family of flats in a t-dimensional finite projective geometry $\operatorname{PG}(t, s)$. Let ℓ be a positive integer such that $\ell \geqq 2$. Then, a family \mathscr{A} is said to be an ℓ intersectional empty set (or $\ell-I E$ set) if the intersection of any ℓ flats $A_{1}, A_{2}, \ldots, A_{\ell}$ in \mathscr{A}, is empty but the intersection of some ($\ell-1$) flats $B_{1}, B_{2}, \ldots, B_{\ell-1}$ in \mathscr{A}, is not empty. \mathscr{A} is also said to be a regular $\ell-I E$ set if all flats in \mathscr{A} have the same dimension, i.e., $\operatorname{dim}(A)=v$ for all A in \mathscr{A}. Furthermore, \mathscr{A}_{0} is said to be a maximal (regular) $\ell-I E$ set if $\left|\mathscr{A}_{0}\right| \geqq|\mathscr{A}|$ for all (regular) $\ell-I E$ sets \mathscr{A} in $P G(t, s)$ where $|\mathscr{A}|$ denotes the cardinality of \mathscr{A}.

Remark. Let $\left\{Q_{i}\right\}(i=1,2, \ldots, \pi)$ be a 3 -independent set in $P G(2, s)$ and let L_{i} be the dual space of Q_{i} for $i=1,2, \ldots, \pi$ where $\pi=s+1$ or $s+2$ according as s is odd or not. Then, the set $\left\{L_{i}\right\}(1 \leqq i \leqq \pi)$ is a maximal regular 3-IE set.

Let $V(n ; s)$ denote an n-dimensional vector space over a Galois field $G F(s)$ where s is a prime or prime power. A k-dimensional subspace C of $V(n ; s)$ is called an s-ary linear code with code length n, k information symbols and the minimum distance d if the minimum distance (Hamming distance) of the code C is equal to d, and is denote by ($n, k, d ; s$)-code.

We now consider the following problem.

Problem. Find a linear code C (called an optimal linear code) whose code length n is minimum among ($*, k, d, s ;$)-codes for given integers k, d and s.

In this paper, we shall construct optimal linear codes using $\ell-I E$ sets

2. Preliminaly results

Let W be a μ-flat in $P G(n, s)$ and let $\boldsymbol{b}_{i}(i=1,2, \ldots, \mu+1)$ be a basis of the μ-flat W. The $(n-\mu-1)$-flat W which is defined by $W^{*}=\left\{\boldsymbol{h} \in P G(n, s): \boldsymbol{h} \boldsymbol{b}_{i}^{T}=0\right.$ over $G F(s)$
$(i=1,2, \ldots, \mu+1)\}$ is called the dual space of the μ-flat W where \boldsymbol{a}^{T} denotes the transpose of \boldsymbol{a}. Especially the empty set will be defined as the dual space of the whole space and vice versa. Then we can easily prove the following:

Proposition 1. Let V and W be any flats in $P G(n, s)$ and let V^{*} and W^{*} be the dual space of V and W, respectively. Then
(i) $V \subset W$ if and only if $V^{*} \supset W^{*}$
(ii) $\quad V^{*} \cap W^{*}=(V \oplus W)^{*}$ and $(V \cap W)^{*}=V^{*} \oplus W^{*}$
where $V \oplus W$ denotes the flats generated by V and W.

A family of t-flats $\left\{V_{i}\right\}$ in $\operatorname{PG}(n, s)$ is called a t-spread if every point in $\operatorname{PG}(n, s)$ belong to one and only one t-flat of $\left\{V_{i}\right\}$.

Let α be a primitive element of $G F\left(s^{n+1}\right)$. Then every point in $\operatorname{PG}(n, s)$ is represented by the power α^{i} of α for some $i=0,1, \ldots, v_{n+1}-1$ where $v_{n+1}=\left(s_{n+1}-1\right) /(s-1)$. If $t+1$ divides $n+1$, then a family of cyclically generated t-flats in $\operatorname{PG}(n, s)$, represented by

$$
V_{i}=\left\{\alpha^{0+i}, \alpha^{\theta+i}, \ldots, \alpha^{(w-1) c+i}\right\} \quad(i=0,1, \ldots, \theta-1)
$$

is a t-spread in $P G(n, s)$ where $w=\left(s^{t+1}-1\right) /(s-1)$ and $\theta=\left(s^{n+1}-1\right) /\left(s^{t+1}-1\right)$. Since α is a primitive element of $G F(q), q=s^{t+1}$, every nonzero element of $G F(q)$ may be represented by $\alpha^{j \theta}(j=0,1, \ldots, q-2)$. Moreover, the set of points $\alpha^{i}(i=0,1, \ldots, \theta-1)$ may be regarded as that of $P G(k, q)$ where $k+1=(n+1) /(t+1)$. This implies that $\left\{V_{i}\right\}$ defined above can also be regarded as the set of all points of $P G(k, q)$. Thus we have

Proposition 2 (cf. [1], [6]). There exists a t-spread in $P G(n, s)$ if and only if $t+1$ divides $n+1$. Furthermore, there exists a t-spread $\left\{V_{i}\right\}$ which can be regarded as the set of all points of $P G(k, q)$ where $k+1=(n+1) /(t+1)$.

A set I of vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{m}$ in $V(r ; s)$ such that no \boldsymbol{t} vectors of L are linearly dependent, is called a t-linearly independent set and a t-linearly independent set L_{0} is said to be maximal if there exists no t-linearly indenpendent set such that $|L|>\left|L_{0}\right|$. The cardinality of a maximal t-linearly independent set L_{0} in $V(r ; s)$ is denoted by $M_{t}(r, s)$.

Attempts of obtaining $M_{t}(r, s)$ have been made by many research workers. But, unfortunately, $M_{t}(r, s)$ are partially obtained for some t, r and s but not yet completely.

Proposition 3. Let m be a nonnegative integer. Then, there exists a set of m-flats $Y_{k}^{*}(k=1,2, \ldots, \pi)$ in $P G(\ell(m+1)-1, s)$ such that $\operatorname{dim}\left(Y_{i_{1}}^{*} \oplus Y_{i_{2}}^{*} \oplus \cdots \oplus Y_{i_{\ell}}^{*}\right)=$ $\ell m+\ell-1$ for any flats $Y_{i_{j}}^{*}(j=1,2, \ldots, \ell)$ in $\left\{Y_{k}^{*}\right\}(1 \leqq k \leqq \pi)$ where $\pi=M_{\ell}\left(\ell, s^{m+1}\right)$.

Proof. It follows from Proposition 2 that there exists an m-spread $\left\{W_{n}^{*}\right\}(n=1$, $2, \ldots, \zeta)$ in $P G(\ell(m+1)-1, s)$ where $\zeta=\left(s^{\ell(m+1)}-1\right) /\left(s^{m+1}-1\right)$. Since each m-flat W_{n}^{*} can be regarded as a point in $P G\left(\ell-1, s^{m+1}\right)$, there exists a maximal ℓ-linearly independent set $\left\{Y_{k}^{*}\right\}(k=1,2, \ldots, \pi)$ in $\left\{W_{n}^{*}\right\}$, i.e., $\operatorname{dim}\left(Y_{i_{1}}^{*} \oplus Y_{i_{2}}^{*} \oplus \cdots \oplus Y_{i_{\ell}}^{*}\right)=\ell m+$ $\ell-1$ for any flats $\left\{Y_{i_{j}}^{*}\right\}(j=1,2, \ldots, \ell)$ in $\left\{Y_{k}^{*}\right\} . \quad\left\{Y_{k}^{*}\right\}(k=1,2, \ldots, \pi)$ is a reguired set. This completes the proof.

Corollary. Let Y_{k} be the dual space of $Y_{k}^{*}(1 \leqq k \leqq \pi)$ which was obtained in Proposition 3. Then, the set $\left\{Y_{k}\right\}(1 \leqq k \leqq \pi)$ is a regular $\ell-I E$ set with cardinality π in $P G(\ell(m+1)-1, s)$.

Proposition 4. A necessary condition for $\mu_{1}, \mu_{2}, \ldots, \mu_{\ell}$ that there exists μ_{i}-flats $W_{i}(i=1,2, \ldots, \ell)$ in $P G(k-1, s)$ such that $W_{1} \cap W_{2} \cap \cdots \cap W_{\ell}=\phi$, is that $\mu_{1}, \mu_{2}, \ldots, \mu_{\ell}$ satisfy the following condition:

$$
\mu_{1}+\mu_{2}+\cdots+\mu_{\ell} \leqq(\ell-1) k-\ell .
$$

Proof. Let $W_{i}^{*}(i=1,2, \ldots, \ell)$ be the dual space of W_{i} in $\operatorname{PG}(k-1, s)$. Then, it is easily shown that $\sum_{i=1}^{\ell}\left\{\operatorname{dim}\left(W_{i}^{*}\right)+1\right\} \geqq k$. Since $\operatorname{dim}\left(W_{i}^{*}\right)=k-2-\mu_{i}$ for $i=$ $1,2, \ldots, \ell$, we have the required result.

Let d be a positive integer. Let us denote by $\theta_{0}+\theta_{1} s+\cdots+\theta_{k-2} s^{k-2}$ and θ_{k-1}, the remainder and the quotient of $d-1$, respectively, when it is divided by s^{k-1}, i.e.,

$$
\begin{equation*}
d=1+\theta_{0}+\theta_{1} s+\cdots+\theta_{k-2} s^{k-2}+\theta_{k-1} s^{k-1} \tag{1}
\end{equation*}
$$

where θ_{i} 's are integers satisfying $0 \leqq \theta_{i} \leqq s-1$ for $i=0,1, \ldots, k-2$ and $\theta_{k-1} \geqq 0$.

Propotion 5 (cf. [2]). For any ($n, k, d ; s$)-code,

$$
\begin{equation*}
n \geqq k+\theta_{0} v_{1}+\theta_{1} v_{2}+\cdots+\theta_{k-1} v_{k} \tag{2}
\end{equation*}
$$

if d is expressed by (1) where $v_{i}=\left(s^{i}-1\right) /(s-1)$ for $i=1,2, \ldots, k$.

The lower bound (2) on n is called the Solomon-Stiffier bound.

3. $\boldsymbol{\ell}-I \boldsymbol{E}$ sets and linear codes

Put $\varepsilon_{i}=s-1-\theta_{i}$ for $i=0,1, \ldots, k-2$ where θ_{i} 's are integers given in (1). Let \mathscr{B} be a set which consists of $\varepsilon_{\mu} \mu$-flats $V_{i}^{\mu}\left(0 \leqq \mu \leqq k-2, i=0,1, \ldots, \varepsilon_{\mu}\right)$ where V_{i}^{μ} 's are not necessarily distinct. Given $\varepsilon_{i}(i=0,1, \ldots, k-2)$, let us denote by $\mathscr{T}\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ the family of all such that \mathscr{B} 's

Note that if there exists an $\ell-I E$ set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$, then there exists an $\ell-I E$ set in $\mathscr{T}\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ for all ε_{0} (cf. Lemma 4.1 in [2]). On the other hand, it is known (cf. [3], [4]) that in order to obtain linear codes attaining the lower bound (2), it is sufficient to obtain $\ell-I E$ sets $(\ell \geqq 2)$ in $P G(t, s)$. Therefore, in this paper, we shall study ℓ-IE sets in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ for some $\varepsilon_{i}(1 \leqq i \leqq k-2)$ satisfying a certain condition.

Let $E(k, s)$ be a collection of ordered sets $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ of integers ε_{i} such that $0 \leqq \varepsilon_{i} \leqq s-1$ for $i=1,2, \ldots, k-2$. Consider a subset $E_{t}(k, s)$ of $E(k, s)$ for some $t=0$, $1, \ldots, k-2$ satisfying the following condition:
(a) $\sum_{i=1}^{k-2} \varepsilon_{i} \leqq t+1$
or
(b) $\sum_{i=1}^{k-2} \varepsilon_{i} \geqq t+2, \beta_{1}+\beta_{2}+\cdots+\beta_{t+2} \leqq(t+1)(k-1)-1$
where β_{i} 's $(i=1,2, \ldots, t+2)$ are the first $t+2$ integers in the following series:

$$
\overbrace{k-2, k-2, \ldots, k-2}^{\varepsilon k-2} ; \overbrace{k-3, k-3, \ldots, k-3}^{\varepsilon_{k}, \ldots} ; \overbrace{1,1, \ldots, 1}^{\varepsilon_{1}} .
$$

It is easy to see that

$$
E_{0}(k, s) \subset E_{1}(k, s) \subset E_{2}(k, s) \subset \cdots
$$

and

$$
E_{j}(k, s)=E(k, s) \quad \text { for } \quad j \geqq k-2 .
$$

So we shall study $\ell-I E$ sets in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ such that $2 \leqq \ell \leqq k-2$.

Proposition 6 (cf. [2]). There exists an ℓ-IE set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$, then $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in E_{\ell-2}(k, s)-E_{\ell-3}(k, s)$ where $E_{-1}(k, s)=\phi$.

Put $k=\ell(m+1)-q(m \geqq 0,0 \leqq q \leqq \ell-1)$ and let $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ be an element in $E_{\ell-2}(k, s)-E_{\ell-3}(k, s)$. Then it follows from (3) that ($\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}$) must be an ordered set such that $0 \leqq \sum_{i=\delta+1}^{k-2} \varepsilon_{i} \leqq \ell-1$ where $\delta=[(\ell k-k-1) / \ell]=(\ell-1) m+\ell-$ $2-q$ and $[x]$ denotes the greatest integer not exceeding x.

Theorem 1. Let $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ be an element in $E_{\ell-2}(k, s)-E_{\ell-3}(k, s)$ such that $\sum_{i=\delta+1}^{k-2} \varepsilon_{i}=0$. If $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ satisfies the following condition:

$$
\begin{equation*}
\sum_{j=z}^{\delta-2} \varepsilon_{j}^{*}+\varepsilon_{\delta-1}+\varepsilon_{\delta} \leqq M_{\ell}\left(\ell, s^{m+1}\right) \tag{4}
\end{equation*}
$$

where $z=[\delta / 2], \varepsilon_{i}^{*}=\max \left\{\varepsilon_{i}, \varepsilon_{\delta-1-i}\right\}(i=z, z+1, \ldots, \delta-2)$ and $\varepsilon_{z}^{*}=\varepsilon_{z}$ if δ is odd, then there exists an ℓ-IE set $\operatorname{in} \mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$.

Proof. Two cases must be considered, i.e., $q=0$ and $1 \leqq q \leqq \ell-1$ where $k=$ $\ell(m+1)-q$.

Case (I) when $q=0$ (i.e., $k=\ell(m+1)$). Let $Y_{i}(i=1,2, \ldots, \pi)$ be $\{(\ell-1) m+$ $\ell-2\}$-flats obtained in Corollary.

We prove this theorem about only the case when δ is even, because the proof in other case is similar to the case when δ is even.

First, choose μ-flats $V_{j}^{\mu}\left(\mu=\delta-1, \delta ; j=1,2, \ldots, \varepsilon_{\mu}\right)$ in $Y_{k}(k=1,2, \ldots, t)$ where $t=\varepsilon_{\delta}+\varepsilon_{\delta-1}$. In the case $\varepsilon_{i}<\varepsilon_{\delta-1-i}(z \leqq i \leqq \delta-2)$, let V_{j}^{i} and $V_{j}^{\delta-1-i}$ be an i-flat and a ($\delta-1-i$)-flat in Y_{n} such that $V_{j}^{i} \cap V_{j}^{\delta-1-i}=\phi$ for $j=1,2, \ldots, \varepsilon_{i}$. Let $V_{j}^{\delta-1-i}$ be a ($\delta-1-i$)-flat in Y_{t} for $j=\varepsilon_{i}+1, \varepsilon_{i}+2, \ldots, \varepsilon_{\delta-1-i}$. In the case $\varepsilon_{i} \geqq \varepsilon_{\delta-1-i}$, we can also choose flats $V_{j}^{\mu}\left(1 \leqq \mu \leqq \delta ; j=1,2, \ldots, \varepsilon_{\mu}\right)$ which are elements of an $\ell-I E$ set. The inequality (4) implies that there exists an $\ell-I E$ sets in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$.

Case (II) when $1 \leqq q \leqq \ell-1$ (i.e., $k=\ell(m+1)-q$). Let G be an $\{\ell(m+1)-q-1\}$ flats in $P G(\ell(m+1)-1, s)$. Choose $(\mu+q)$-flats $V_{j}^{\mu+q}\left(1 \leqq \mu \leqq k-2, j=1,2, \ldots, \varepsilon_{\mu}\right)$ contained in $P G(\ell(m+1)-1, s)$ which were obtained in Case (I). Put $U_{j}^{\mu}=G \cap V_{j}^{\mu+q}$ for all μ and j. Then, $\mathscr{B}=\left\{U_{j}^{\mu}\right\}\left(1 \leqq \mu \leqq k-2 ; j=1,2, \ldots, \varepsilon_{\mu}\right)$ is a required set, because G can be identified with $P G(\ell(m+1)-q-1, s)$. This completes the proof.

Put $k=\ell(m+1)-q(m \geqq 0,0 \leqq q \leqq \ell-1)$ and $\delta=[(\ell k-k-\ell) / \ell]=(\ell-1) m+$ $\ell-2-q$. In the case ${ }_{i=\delta+1}^{k-2} \varepsilon_{i}=p(\geqq 1)$, let us denote by $\delta+e_{i}(i=1,2, \ldots, p) p$ integers such that

$$
\overbrace{\delta+1, \delta+1, \ldots, \delta+1}^{\varepsilon \delta+1} ; \overbrace{\delta+2, \delta+2, \ldots, \delta+2}^{\varepsilon_{\delta+2}} ; \ldots ; \overbrace{k-2, k-2, \ldots, k-2}^{\varepsilon_{k-2}}
$$

where $1 \leqq e_{1} \leqq e_{2} \leqq \cdots \leqq e_{p} \leqq k-2$.
Put $e_{1}+e_{2}+\cdots+e_{p}=e$. Then, we have

Theorem 2. Let $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ be an element in $E_{\ell-2}(k, s)-E_{\ell-3}(k, s)$ such that $1 \leqq \sum_{i=\delta+1}^{k-2} \varepsilon_{i}(=p) \leqq \ell-2$. If $\ell-p \geqq 2, \quad \tau=[e /(\ell-p)] \geqq 1$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ satisfies the following condition:

$$
\begin{equation*}
\sum_{i=z}^{\delta-e-2} \varepsilon_{i}^{*}+\sum_{i=\delta-e-1}^{\delta} \varepsilon_{i}+p \leqq M_{\ell}\left(\ell, s^{m+1}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=\delta-e+1}^{\delta} \varepsilon_{i} \leqq M_{\ell-p}\left(\ell-p, s^{\tau}\right) \tag{6}
\end{equation*}
$$

where $z=[(\delta-e) 2], \varepsilon_{i}^{*}=\max \left\{\varepsilon_{i}, \varepsilon_{\delta-e-1-i}\right\} \quad(i=z, z+1, \ldots, \delta-e-2) \quad$ and $\varepsilon_{z}^{*}=\varepsilon_{z}$ if $\delta-e$ is odd, then there exists an $\ell-I E$ set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$.

Theorem 3. Let $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ be an element in $E_{\ell-2}(k, s)-E_{\ell-3}(k, s)$ such
that $\sum_{i=\delta+1}^{k-2} \varepsilon_{i}=\ell-1 . \quad$ If $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ satisfies the following condition:

$$
\begin{equation*}
\sum_{j=z}^{v-2} \varepsilon_{j}^{*}+\varepsilon_{v-1}+\varepsilon_{v}+\ell-1 \leqq M_{\ell}\left(\ell, s^{m+1}\right) \tag{7}
\end{equation*}
$$

where $v=\delta-e_{\ell}, z=[v / 2]$ and $\varepsilon_{i}^{*}=\max \left\{\varepsilon_{i}, \varepsilon_{v-1-i}\right\}(i=z, z+1, \ldots, v-2)$ and $\varepsilon_{z}^{*}=\varepsilon_{z}$ if v is odd, then there exists an $\ell-I E$ set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$.

In order to Theorems 2 and 3, we prepare a lemma. Let $V_{i}(i=1,2, \ldots, p)$ and V_{j} $(j=p+1, p+2, \ldots, \ell)$ are $\left.\left\{(\ell-1) m+\ell-2+e_{i}\right)\right\}$-flats and $\left\{(\ell-1) m+\ell-2-e_{j}\right\}$-flats in $P G(\ell(m+1)-1, s)$, respectively, such that $V_{1} \cap V_{2} \cap \cdots \cap V_{p} \cap V_{p+1} \cap \cdots \cap V_{\ell}=\phi$. Then it follows from Proposition 4 that $e_{i}(i=1,2, \ldots, \ell)$ must be integers satisfying the following condition:

$$
\begin{equation*}
e_{1}+e_{2}+\cdots+e_{p} \leqq e_{p+1}+e_{p+2}+\cdots+e_{\ell} \tag{8}
\end{equation*}
$$

Let $e_{i}(i=1,2, \ldots, \ell-1)$ be integers such that $1 \leqq e_{1} \leqq e_{2} \leqq \cdots \leqq e_{p} \leqq m$ and $0 \leqq$ $e_{p+1} \leqq e_{p+2} \leqq \cdots \leqq e_{\ell-1} . \quad$ Put $e_{\ell}=\max \left\{\left(e_{1}+e_{2}+\cdots+e_{p}\right)-\left(e_{p+1}+e_{p+2}+\cdots+e_{\ell-1}\right)\right.$, $\left.e_{\ell-1}\right\}$. Then, it is easy to see that $e_{1}, e_{2}, \ldots, e_{\ell}$ are integers which satisfy the inequality (8) and $e_{p+1} \leqq e_{p+2} \leqq \cdots \leqq e_{\ell-1} \leqq e_{\ell}$. Put $e_{1}+e_{2}+\cdots+e_{p}=e \quad$ and $[e /(\ell-p)]=\tau$. Then we have

Lemma. If $\tau \geqq 1$ and $\ell-p \geqq 2$, then there exists an $\ell-I E$ set consists of $\{(\ell-1) m$ $\left.+\ell-2+e_{i}\right\}$-flats $V_{i}(i=1,2, \ldots, p),\left\{(\ell-1) m+\ell-2-e_{i}\right\}$-flats $Q_{j}(j=p+1, p+2, \ldots$, $\ell-1), \quad\left\{(\ell-1) m+\ell-2-e_{\ell}\right\}$-flats $\quad R_{k} \quad(k=\ell, \ell+1, \ldots, \lambda+p) \quad$ and $\quad\{(\ell-1) m+\ell-$ $2-e\}$-flats $T_{n}(n=\lambda+p+1, \lambda+p+2, \ldots, \pi)$ in $P G(\ell(m+1)-1, s)$ where $e_{\ell} \leqq e, \lambda=$ $M_{\ell-p}\left(\ell-p, s^{\tau}\right), \pi=M_{\ell}\left(\ell, s^{m+1}\right)$ and $\lambda+p \leqq \pi$.

Proof. Let $Y_{t}^{*}(t=1,2, \ldots, \pi)$ be m-flats given in the proof of Proposition 3. Let U_{i} and V_{i}^{*} be an $\left(e_{i}-1\right)$-flat and an $\left(m-e_{i}\right)$-flat in Y_{i}^{*}, respectively, such that $U_{i} \cap$ $V_{i}^{*}=\phi$ for $i=1,2, \ldots, p$. Let W be the flat generated by $U_{1}, U_{2}, \ldots, U_{p}$, i.e., $W=U_{1} \oplus$ $U_{2} \oplus \cdots \oplus U_{p}$. Then, it is easy to see that W is an $(e-1)$-flat where $e=e_{1}+e_{2}+\cdots+e_{p}$, because $\operatorname{dim}\left(Y_{i_{1}}^{*} \oplus Y_{i_{2}}^{*} \oplus \cdots \oplus Y_{i_{\ell}}^{*}\right)=\ell m+\ell-1 \quad$ for any flats $Y_{i_{j}}^{*}(j=1,2, \ldots, \ell)$ in $\left\{Y_{k}^{*}\right\}$. Let $e=(\ell-p) \tau+f(0 \leqq f<\ell-p)$. Then we can choose an $(e-f-1)$-flat W_{1} and $a(f-1)$-flat W_{2} in W such that $W_{1} \cap W_{2}=\phi$. Then we can obtain a set of $(\tau-1)$ flats $D_{i}(i=p+1, p+2, \ldots, \lambda+p)$ in W_{1} such that $\operatorname{dim}\left(D_{i_{1}} \oplus D_{i_{2}} \oplus \cdots \oplus D_{i_{\ell-p}}\right)=e-f-$ $1=(\ell-p) \tau-1$ for any flats $D_{i_{1}}, D_{i_{2}}, \ldots, D_{i_{\ell-p}}$ in $\left\{D_{k}\right\}(i=p+1, p+2, \ldots, \lambda+p)$ where $\lambda=M_{\ell-p}\left(\ell-p, s^{\tau}\right)$.

We now prove this lemma by separating two cases.
Case (I) $e-\left(e_{p+1}+e_{p+2}+\cdots+e_{\ell-1}\right)>e_{\ell-1}$ (i.e., $e_{\ell}=e-\left(e_{p+1}+e_{p+2}+\cdots+e_{\ell-1}\right)$.
Put $g-p=\left|\left\{j: 0 \leqq e_{j} \leqq \tau-1\right\}\right|$ and $r-g=\left|\left\{j: e_{j}=\tau\right\}\right|$.
(i) Case $0 \leqq e_{j} \leqq \tau-1(p+1 \leqq j \leqq g)$. Let B_{j} and F_{j} be an $\left(e_{j}-1\right)$-flat and a $\left(\tau-1-e_{j}\right)$-flat in D_{j}, respectively, such that $B_{j} \cap F_{j}=\phi$ and put $Q_{j}^{*}=B_{j} \oplus Y_{j}^{*}$ for $j=$ $p+1, p+2, \ldots, g$.
(ii) Case $e_{i}=\tau(g+1 \leqq j \leqq r)$. Put $Q_{j}^{*}=D_{i} \oplus Y_{j}^{*}$ for $j=g+1, g+2, \ldots, r$.
(iii) Case $\tau+1 \leqq e_{j} \leqq u(r+1 \leqq j \leqq \ell)$. Let F_{j} be a ($\left.\tau-1-e_{j}\right)$-flat obtained in (i) and let $\boldsymbol{a}_{\left(\sigma_{j}+n\right)}\left(n=1,2, \ldots, \tau-e_{j}\right)$ be a basis of F_{j} for $j=p+1, p+2, \ldots, g$ where $\sigma_{p+1}=0$ and $\sigma_{j}=\sum_{i=p+1}^{j-1}\left(\tau-e_{i}\right)(p+2 \leqq j \leqq g)$. Since $e_{\ell}=e-\left(e_{p+1}+e_{p+2}+\cdots+e_{\ell-1}\right)=$ $(\ell-p) \tau+f-\left(e_{p+1}+e_{p+2}+\cdots+e_{\ell-1}\right)$ i.e., $(\ell-p) \tau=e_{\ell}-f+e_{p+1}+\cdots+e_{\ell-1}$ and $e_{j}=$ $\tau(j=g+1, g+2, \ldots, r)$, it follows that $\left(\tau-e_{p+1}\right)+\cdots+\left(\tau-e_{g}\right)+\left(\tau-e_{g+1}\right)+\cdots+\left(\tau-e_{r}\right)$ $+\left(\tau-e_{r+1}\right)+\cdots+\left(\tau-e_{\ell-1}\right)+\left(\tau-e_{\ell-1}\right)+\left(\tau-e_{\ell}\right)=(\ell-p) \tau-\left(e_{p+1}+e_{p+2}+\cdots+e_{\ell-1}\right)$ $-e_{\ell}$ implies

$$
\sum_{i=p+1}^{g}\left(\tau-e_{i}\right)=\left(e_{\ell}-f-\tau\right)+\sum_{i=r+1}^{\ell-1}\left(e_{i}-\tau\right)
$$

Put $K_{i}=a_{\left(\sigma_{i}+1\right)} \oplus a_{\left(\sigma_{i}+2\right)} \oplus \cdots \oplus a_{\left(\sigma_{i}+e_{i}-t\right)}$ for $i=r+1, \quad r+2, \ldots, \ell-1$ and put $K_{\ell}=\boldsymbol{a}_{\left(\sigma_{\ell}+1\right)} \oplus \boldsymbol{a}_{\left(\sigma_{\ell}+2\right)} \oplus \cdots \oplus \boldsymbol{a}_{\left(\sigma_{\ell}+e_{\ell}-f-\tau\right)}$ where $\sigma_{r+1}=0$ and $\sigma_{j}=\sum_{i=r+1}^{j-1}\left(e_{i}-\tau\right)(r+2 \leqq$ $j \leqq \ell-1$).

Let $Q_{j}^{*}=D_{j} \oplus K_{j} \oplus Y_{j}^{*}$ for $j=r+1, r+2, \ldots, \ell-1$ and let $R_{k}^{*}=D_{k} \oplus K_{\ell}+W_{2} \oplus Y_{k}^{*}$ for $k=\ell, \ell+1, \ldots, \lambda+p$ and let $T_{n}^{*}=Y_{n}^{*} \oplus W$ for $n=\lambda+p+1, \lambda+p+2, \ldots, \pi$. It is easily to see that $Q_{j}^{*}(j=p+1, p+2, \ldots, \ell-1)$ is an $\left(m+e_{j}\right)$-flat and R_{k}^{*} is an $\left(m+e_{\ell}\right)$ flat. Let V_{i}, Q_{j}, R_{k} and T_{n} be the dual space of $V_{i}^{*}, Q_{j}^{*}, R_{k}^{*}$ and T_{n}^{*}, respectively, for each i, j, k and n. Let $\mathscr{B}=\left\{V_{i}\right\} \cup\left\{Q_{j}\right\} \cup\left\{R_{k}\right\} \cup\left\{T_{n}\right\}$. Then \mathscr{B} is a required set.

Case (II) $e-\left(e_{p+1}+e_{p+2}+\cdots+e_{\ell-1}\right) \leqq e_{\ell-1}$ (i.e., $e_{\ell}=e_{\ell-1}$).
Similary, it can be shown that Lemma also holds in this case. This completes the proof.
[Proofs of Theorems 2 and 3]. From lemma, we can easily prove Theorems 2 and 3 similary to Theorem 1. So we omit the proofs of Theorems 2 and 3.

As an application of Theorems 1,2 and 3 , we shall study 4-IE sets in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots\right.$, ε_{k-2}) where $\left(\varepsilon_{1}, \ldots, \varepsilon_{k-2}\right) \in E_{2}(k, s)-E_{1}(k, s)$. Let K_{p} be a set of $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E_{2}(k, s)-E_{1}(k, s)$ such that $\sum_{i=\delta+1}^{k-2} \varepsilon_{i}=p$. Then we know that $0 \leqq p \leqq 3$.

Proposition 7. For each ordered set $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in K_{0} or K_{3}, there exists a $4-I E$ set in $\mathscr{T}\left(0, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$.

Proof. We prove this theorem for only K_{0}, because the proof for K_{3} is similar to that for K_{0}.

Case (I) when $q=0$ (i.e., $k=4(m+1)$). It is sufficient to show that there exists a 4-IE set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ for the case $\varepsilon_{1}=s-1, \varepsilon_{2}=s-1, \ldots, \varepsilon_{3 m+2}=s-1$ and $\varepsilon_{i}=0$
$(i=3 m+3, \ldots, 4 m+2)$.
By computing the left hand in (4), we have

$$
\sum_{j=z}^{\delta} \varepsilon_{j}=\sum_{j=z}^{3 m+2}(s-1)=((3 m+4) / 2)(s-1) \quad \text { or } \quad((3 m+5) / 2)(s-1)
$$

according as m is even or not, because $z=(3 m+2) / 2$ or $z=(3 m+1) / 2$ according as m is even or not.

Since $M_{4}\left(4, s^{m+1}\right)=s^{m+1}+1, m \geqq 1$ and $s \geqq 2$, we have $((3 m+5) / 2)(s-1) \leqq s^{m+1}+1$. It follows from Theorem 1 that there exists a 4-IE set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ for the case $\varepsilon_{1}=s-1, \varepsilon_{2}=s-1, \ldots, \varepsilon_{3 m+2}=s-1$ and $\varepsilon_{i}=0(i=3 m+3, \ldots, 4 m+2)$.

Case (II) when $1 \leqq q \leqq 3$. The proof in this case is similar to that in Case (II) in Theorem 1. Thus we have the required results. This completes the proof.

Proposition 8. Let $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ be an element in K_{1}. If $\tau \geqq 2$, then there exists $a 4-I E$ set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ where $\tau=[e / 3]$.

Proof. We prove this proposition about only the case when $q=0$, because the proof in another case is similar to that in the case (II) in Theorem 1.

In this case, we now prove this proposition by separating two cases $e-\left(e_{2}+e_{3}\right)>e_{3}$ or $e-\left(e_{2}+e_{3}\right) \leqq e_{3}$ (i.e., $e_{4}=e-\left(e_{2}+e_{3}\right)$) or $\left.e_{3}=e_{4}\right)$.
(i) The case $e-\left(e_{2}+e_{3}\right)>e_{3}$ (i.e., $e_{4}=e-\left(e_{2}+e_{3}\right)$).

It is sufficient to show that there exists a $4-I E$ set in $\mathscr{T}\left(0, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ for $\varepsilon_{1}=$ $s-1, \ldots, \varepsilon_{3 m+2-e_{4}}=s-1, \varepsilon_{3 m+2-e_{3}}=1, e_{3 m+2-e_{2}}=1, \varepsilon_{3 m+2+e_{1}}=1$ and $\varepsilon_{i}=0$ for any other integer i where $1 \leqq i \leqq k-2$. Since $\tau \geqq 2$, we have $6 \leqq e \leqq m$. This implies that the left hand of (5) is less than or equall to $M_{4}\left(4, s^{m+1}\right)$. By computing left hand in (6), it follows that

$$
\sum_{i=\delta-e+1}^{\delta} \varepsilon_{i}=\left(e_{2}+e_{3}\right)(s-1)+2 \leqq 2 \tau(s-1)+2 \leqq M_{3}\left(3, s^{\tau}\right)
$$

because $M_{3}\left(3, s^{\tau}\right)=s^{\tau}+2$ or $s^{\tau}+1$ according as s is even or not.

Proposition 9. Let $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ be an element in K_{1}. For $\tau=0$, there exists a 4-IE set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ where $\tau=[e / 3]$.

Proof. (I) The case $e=1$. If $e-\left(e_{2}+e_{3}\right)>e_{3}$, we have $e_{2}=0, e_{3}=0$ and $e_{4}=1$ since $0 \leqq e_{2} \leqq e_{3} \leqq e_{4}$. Therefore, it is sufficient to show that there exists $4-I E$ set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ for the case $\varepsilon_{3 m+3}=1, \varepsilon_{3 m+2}=2, \varepsilon_{3 m+1}=s-1, \ldots, \varepsilon_{1}=s-1$. It is noticed that this case occurs for $s \geqq 3$. Since $3+2(s-1)+[(3 m-1+1) / 2](s-1) \leqq$ $s^{m+1}+1$, we can get the required set by similar arguments mentioned in the proof of Lemma. If $e-\left(e_{2}+e_{3}\right) \leqq e_{3}$, we have $e_{3} \geqq e / 3$, i.e., $e_{3} \geqq 1$. In this case, it is sufficient to prove this proposition for the case $e_{2}=0$ and $e_{3}=1$ (or $e_{2}=1$ and $e_{3}=1$). Similarly
to the above case, we can get the required set.
(II) The case $e=2$. The proof of this case is similar to that in the case $e=1$ except the case $e_{2}=0, e_{3}=1$ and $e_{4}=1(s \geqq 3)$.

In the case case $e_{2}=0, e_{3}=1$ and $e_{4}=1$, it is sufficient to show that there exists 4-IE set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ for the case $\varepsilon_{3 m+4}=1, \varepsilon_{3 m+2}=1, \varepsilon_{3 m+1}=s-1, \ldots, \varepsilon_{1}=s-1$. Let $\left\{Y_{i}^{*}\right\}$ be flats given in Proposition 3. Let V_{1}^{*} and W^{*} be an $(m-2)$-flat and a 1 -flat in Y_{1}^{*} such that $V_{1}^{*} \cap W^{*}=\phi . \quad$ Let us denote all the points of W^{*} by $Q_{i}(i=1,2, \ldots, s+1)$. Let $V_{1}^{(3 m+4)}$ and $V_{2}^{(3 m+2)}$ be the dual spaces of V_{1}^{*} and Y_{2}^{*}, respectively. Let $V_{i}^{(3 m+1}$ ($i=1,2, \ldots, s-1$) be the dual space of $Y_{i+2}^{*} \oplus Q_{i}$. We can choose other flats $V_{j}^{(3 m+2-i)}$ $(i=2, \ldots, 3 m+1, j=1, \ldots, s-1)$ in $Y_{j}^{*}(j=s+2, s+3, \ldots)$ so that $\left\{V_{j}^{\mu}\right\}(1 \leqq \mu \leqq 3 m+4$, $\left.\mu \neq 3 m+3, j=1,2, \ldots, \varepsilon_{\mu}\right)$ is a $4-I E$ set since $2+2(s-1)+[(3 m-1) / 2] \leqq s^{m+1}+1$. This completes the proof.

Proposition 10. Let $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ be an element in K_{1}. For $\tau=1$, there exists $a 4-I E$ set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ where $\tau=[e / 3]$.

Proof. Two cases must be considered (i.e., $q=0$ and $1 \leqq q \leqq \ell-1$)
We prove this proposition about only the case $q=0$.
(I) The case $e=3$. If $e-\left(e_{2}+e_{3}\right)>e_{3}$, then since $0 \leqq e_{2} \leqq e_{3}$, it is sufficient to consider the following two cases, that is,
(a) $e_{2}=0, e_{3}=0$ and $e_{4}=3$
(b) $e_{2}=0, e_{3}=1$ and $e_{4}=2$

Case (a). Since $e=3$, we get $m \geqq 3$. This shows that $3+2(s-1)+[(3 m-2) / 2]$. $(s-1) \leqq s^{m+1}+1$. By similar arguments in the proof of lemma we can show that there exists a 4-IE set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ for all $\left(\varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ in K_{1}.

Case (b). The proof of this case is similar to that of the case $e=2$ in Proposition 9. So we omit it.

If $e-\left(e_{2}+e_{3}\right) \leqq e_{3}$, then we have $e_{3} \geqq 1$ since $0 \leqq e_{2} \leqq e_{3}$. On the other hand, it is sufficient to consider the case $e_{3} \leqq 2$. This case is separated as follows:
(a) $e_{2}=1$ and $e_{3}=1$,
(b) $e_{2}=0$ and $e_{3}=2$,
(c) $e_{2}=1$ and $e_{3}=2$,
(d) $e_{2}=2$ and $e_{3}=2$.

Case (a). It is sufficient to show that there exists a $4-I E$ set in $\mathscr{T}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)$ for the case $\varepsilon_{1}=s-1, \varepsilon_{2}=s-2, \ldots, \varepsilon_{3 m+1}=s-1, \varepsilon_{3 m+5}=1$.

Let $Y_{i}^{*}(i=1,2, \ldots, \pi)$ be an m-flat given in Proposition 3. Let V_{1}^{*} and W^{*} be an ($m-3$)-flat and a 2 -flat in Y_{1}^{*} such that $V_{1}^{*} \cap W^{*}=\phi . \quad$ Let $\left\{Q_{i}\right\}(i=1,2, \ldots, s)$ be a 3independent set W^{*} and let $L_{i}(i=1,2, \ldots, s-1)$ be points passing through the point $Q_{s} \quad$ Put $R_{i}^{*}=Y_{i+1}^{*} \oplus Q_{i}, T_{i}^{*}=Y_{s+i}^{*} \oplus L_{i}$ for $i=1,2, \ldots, s-1$ and put $U_{j}^{*}=Y_{(2 s-1+j)}^{*} \oplus$ W^{*} for $j=1,2, \ldots, \pi-2 s+1$. Let V_{1}, R_{i}, T_{i} and U_{j} be the dual space of $V_{1}^{*}, R_{i}^{*}, T_{i}^{*}$ and U_{j}^{*}, respectively for all i and j. Put $V_{1}^{(3 m+5)}=V_{1}, V_{i}^{(3 m+1)}=R_{i}$ and $V_{i}^{3 m}=T_{i}$. Let $V_{j}^{3 m-r}$
$(r=1,2 ; j=1,2, \ldots, s-1)$ be a $(3 m-r)$-flat in $U_{n}(n=1,2, \ldots, 2 s-2)$. If $3 m-3$ is even, then for $d=1,2, \ldots, z$ and $j=1,2, \ldots, s-1$, let $V_{j}^{(3 m-2-d)}$ and V_{j}^{d} be a $(3 m-2-d)$ flat and a d-flat in $U_{k}(k=2 s-1,2 s, \ldots, z(s-1)+2(s-1))$ such that $V_{j}^{(3 m-2-d)} \cap V_{j}^{d}=\phi$ where $z=(3 m-3) / 2$. Since $1+4(s-1)+z(s-1) \leqq s^{m+1}+1$, we have the required set. We can also easily get the required set when $3 m-3$ is odd.

In the case (b), (c) or (d), the proof is similar to that in the above cases in this proposition. So it is omitted here.
(II) The case $e=4$. If $e-\left(e_{2}+e_{3}\right) \geqq e_{3}$, then it is sufficient to consider the following four cases, that is,
(a) $e_{2}=0, e_{3}=0$ and $e_{4}=4$,
(b) $e_{2}=0, e_{3}=1$ and $e_{4}=3$.
(c) $e_{2}=0, e_{3}=2$ and $e_{4}=2$,
(d) $e_{2}=1, e_{3}=1$ and $e_{4}=2$.

The proof of Case (a) or (b) is similar to that of case (a) or (b) in the case $e=3$. So we omit them.

Case (c). Let $Y_{i}^{*}(i=1,2, \ldots, \pi)$ be an m-flat given in Proposition 3 and let W_{1}^{*} be a 3-flat in Y_{1}^{*}. Let W^{*} be a 2 -flat contained in W_{1}^{*} and let X be a point in W_{1}^{*} but not contained in W^{*}. Let $\left\{Q_{i}\right\}(i=1,2, \ldots, s)$ be a 3 -independent set in W^{*} and let L_{i} $(i=1,2, \ldots, s-1)$ be points passing through the point Q_{s}. Put $R_{i}^{*}=Y_{i+1}^{*} \oplus Q_{i} \oplus X$, $T_{i}^{*}=Y_{s+i}^{*} \oplus L_{i} \oplus X$ for $i=1,2, \ldots, s-1$. Then, similarly to the proof of Case (a) in (I), we can get the required 4-IE set which contains R_{i} and T_{i} for $i=1,2, \ldots, s-1$ where R_{i} and T_{i} denotes the dual space of R_{i}^{*} and T_{i}^{*}, respectively.

In the case (d), we can get the required 4-IE set similarly to the case (a) in the case $e=4$.
(III) The case $e=5$. The proof of this case is omitted, because it is also similar to the cases $e=3$ and $e=4$.

References

[1] P. Dembowski, Finite geometries, Springer-Verlag, Berlin, Heidelberg, New York, 1968.
[2] N. Hamada and F. Tamari, Construction of optimal codes and optimal fractional factorial designs using linear programming, Annals of Discrete Mathematics 6 (1980), 175-188.
[3] N. Hamada and F. Tamari, Construction of optimal codes using flats and spreads in a finite projective geometry, European Journal of Combinatorics 3, (1982), 129-141.
[4] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting codes, NorthHolland Mathematical Library, Vol. 16, Amsterdam, 1977.
[5] G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes, Information and Control 8 (1965), 170-179.
[6] S. Yamamoto, T. Fukuda and N. Hamada, On finite geometries and cyclically generated incomplete block designs, J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 137-149.

