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Abstract

In this paper, we shall construct optimal linear codes using £ intersectional empty set (or £-/E
set) where £ is a positive integer such that £=2. Furthermore, we shall study 4-/E sets in detail.

1. Introduction and summary

Let o7 be a family of flats in a t-dimensional finite projective geometry PG(t, s).
Let ¢ be a positive integer such that £22. Then, a family o is said to be an ¢
intersectional empty set (or ¢-IE set) if the intersection of any ¢ flats 4;, 4,,..., 4, in
&7, is empty but the intersection of some (¢ —1) flats By, B,,..., B,_, in &, is not empty.
& is also said to bearegular £-IE set if all flats in < have the same dimension, i.e.,
dim (4)=v for all 4 in »#. Furthermore, %, is said to be a maximal (regular) ¢-IE
set if || =|s2| for all (regular) ¢-1E sets o in PG(t, s) where |/| denotes the
cardinality of <.

REMARK. Let {Q;} (i=1, 2,..., 1) be a 3-independent set in PG(2, s) and let L;
be the dual space of Q, for i=1, 2,..., n where n=s+1 or s+2 according as s is odd or
not. Then, the set {L;} (1<i<r) is a maximal regular 3-IE set.

Let V(n;s) denote an n-dimensional vector space over a Galois field GF(s)
where s is a prime or prime power. A k-dimensional subspace C of V(n; s) is called
an s-ary linear code with code length n, k information symbols and the minimum
distance d if the minimum distance (Hamming distance) of the code C is equal to d,
and is denote by (n, k, d; s)-code.

We now consider the following problem.

PROBLEM. Find a linear code C (called an optimal linear code) whose code
length n is minimum among (x, k, d, s;)-codes for given integers k, d and s.

In this paper, we shall construct optimal linear codes using ¢-IE sets

2. Preliminaly results

Let W be a pu-flat in PG(n, s) and let b; (i=1, 2,..., p+1) be a basis of the p-flat W.
The (n—p—1)-flat W which is defined by W*={he PG(n, s): hb] =0 over GF(s)
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(i=1,2,..., u+ 1)} is called the dual space of the u-flat W where a” denotes the transpose
of a. Especially the empty set will be defined as the dual space of the whole space and
vice versa. Then we can easily prove the following:

ProposITION 1. Let V and W be any flats in PG(n, s) and let V¥ and W* be the
dual space of V and W, respectively. Then

(i) VceWifandonly if V¥*¥oW*

(i) V¥*nWr=(VeW)* and (VN W)*=V*@QW*
where V@ W denotes the flats generated by V and W.

A family of t-flats {V;} in PG(n, s) is called a r-spread if every point in PG(n, s)
belong to one and only one ¢-flat of {V}.

Let « be a primitive element of GF(s**!). Then every point in PG(n, s) is repre-
sented by the power af of « for some i=0, 1,...,v,,,—1 where v,, ;=(s,+;—1/(s—1).
If t+ 1 divides n+1, then a family of cyclically generated t-flats in PG(n, s), represented
by

Vi={a0%, a®*i, .., av-Deti} (i=0, 1,..., 6—1)

is a t-spread in PG(n, s) where w=(s'*!—1)/(s—1) and §=(s"*'—1)/(s***~1). Since
o is a primitive element of GF(q), g=s'"!, every nonzero element of GF(q) may be
represented by a/¢ (j=0, 1,..., ¢—2). Moreover, the set of points af (i=0, 1,...,6—1)
may be regarded as that of PG(k, g) where k+1=(n+1)/(t+1). This implies that
{V;} defined above can also be regarded as the set of all points of PG(k, g). Thus

we have

PROPOSITION 2 (¢f. [1], [6]). There exists a t-spread in PG(n, s) if and only if
t+1 divides n+1. Furthermore, there exists a t-spread {V;} which can be regarded
as the set of all points of PG(k, q) where k+1=(n+1)/(t+1).

A set L of vectors ay, a,,..., a,, in V(r; s) such that no ¢t vectors of L are linearly
dependent, is called a t-linearly independent set and a t-linearly independent set L,
is said to be maximal if there exists no t-linearly indenpendent set such that |L|>|L,|.
The cardinality of a maximal #-linearly independent set L, in V(r; s) is denoted by
M(r, s).

Attempts of obtaining M,(r, s) have been made by many research workers. But,
unfortunately, M(r, s) are partially obtained for some ¢, r and s but not yet completely.

PROPOSITION 3. Let m be a nonnegative integer. Then, there exists a set of
m-flats Y¥ (k=1,2,..., n) in PG (4(m+1)—1, 5) such thatdim (Y} @YD ®Y})=
¢m+0—1 foranyflats YE (j=1, 2,..., £) in {Y}} (1Sk=n) where m=M (£, s™*1).



L Intersectional Empty Sets (or £-IE Sets) and Linear Codes 41

Proor. It follows from Proposition 2 that there exists an m-spread {W}¥} (n=1,
2,...,0) in PG(4(m+1)—1,s) where (=(st0"tD—1)/(s"**—1). Since each m-flat
W* can be regarded as a point in PG(£—1, s™*1), there exists a maximal ¢-linearly
independent set {Y§¥} (k=1, 2,...,n) in {W}}, ie, dim(Y}QY P - ®Y})=Im+
¢—1 for any flats {Y¥} (j=1,2,..., ) in {Y¥}. {Y¥} (k=1,2,..,m) is a reguired
set. This completes the proof.

COROLLARY. Let Y, be the dual space of Y¥ (1<k=<n) which was obtained in
Proposition 3. Then, theset{Y,} (1<k<m) is a regular ¢-1E set with cardinality n
in PG(4(m+1)—1, s).

PROPOSITION 4. A necessary condition for u,, us,..., i, that there exists p-flats
W (i=1, 2,..., £) in PG(k—1, s) such that W,nW,yn--- N W,=¢, is that piy, ps,..., iy
satisfy the following condition:

pytpp e+ py S(6—-1Dk— 2.

ProOF. Let W¥ (i=1, 2,..., £) be the dual space of W, in PG(k—1, s). Then,
)

it is easily shown thaty {dim (W¥)+1}=k. Since dim(W¥§)=k—-2—p; for i=
i=1

1, 2,..., ¢, we have the required result.

Let d be a positive integer. Let us denote by 8y+8,s+--+0,_,s*"2 and 6,_,,
the remainder and the quotient of d —1, respectively, when it is divided by s*71, i.e,,

d=1+4+04+0,s+ - +0,_,s*2+0,_,s¢1 )]

where 0,’s are integers satisfying 0<6,<s—1 for i=0, 1,..., k—2 and 6,_,=0.

PrOPOTION 5 (cf. [2]). For any (n, k, d; s)-code,
ngk+0001+0102+"‘+0k_10k (2)
if d is expressed by (1) where v;=(s'—1){(s—1) for i=1, 2,..., k.

The lower bound (2) on n is called the Solomon-Stiffier bound.

3. £-IE sets and linear codes

Put g;=s—1—6; for i=0, 1,..., k—2 where 6,’s are integers given in (1). Let #
be a set which consists of g, u-flats V¥ (0=su<k-2,i=0, I,..., ¢,) where V’s are not
necessarily distinct. Given ¢; (i=0, 1,..., k—2), let us denote by F (&g, &,..., &.. ;) the
family of all such that 2’s
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Note that if there exists an ¢-IE set in J(0, ¢,,..., §_,), then there exists an
¢-1E set in T (&, €;,..., &_,) for all g, (cf. Lemma 4.1 in [2]). On the other hand, it
is known (cf. [3], [4]) that in order to obtain linear codes attaining the lower bound (2),
it is sufficient to obtain ¢-IE sets (¢ 22) in PG(t, s). Therefore, in this paper, we shall
study ¢-1E sets in 7(0, &,,..., &_,) for some ¢; (1<i<k—2) satisfying a certain con-
dition.

Let E(k, s) be a collection of ordered sets (g, &,,..., &-_,) of integers ¢; such that
0s¢g=<s—1fori=1,2,..,k—2. Consider a subset E(k, s) of E(k, s) for some t=0,
1,..., k—2 satisfying the following condition:

k—2
(@) X g=st+1
i=1

or (3)
() T aZt+2 Byt 4 Baa S D=1 1

where B;’s (i=1, 2,..., t+2) are the first #+2 integers in the following series:

£k -2 £Ek-3 g1
PN

k=2, k—=2,..,k=2; k=3, k=3,...k=35..;1,1,., 1.

It is easy to see that
Ey(k, s)c E (k, s)c E,(k, s)c---
and
E(k, s)=E(k, s) for j=k-2.

So we shall study ¢-1E sets in 7(0, ¢,,..., & _,) such that 2<¢<k—2.

PROPOSITION 6 (cf. [2]). There exists an 4-IE set in 9(0, ¢,..., &_,), then
(€15 €25, 8 _2) EE,_o(k, s)—E, _3(k, s) where E_ (k, s)=¢.

Put k=4(m+1)—q (m=20,0=<g=<¢—1) and let (¢, &,,..., §_,) be an element in

E,_,(k, s)—E;_3(k, s). Then it follows from (3) that (¢, ¢,,..., &_,) must be an
-2

ordered set such that 0< kz g§<f¢—1where d=[(bk—k—-1)/{]=(“L—-Dm+ £—

i=6+1
2—gq and [x] denotes the greatest integer not exceeding x.

THEOREM 1. Let (g4, &,,..., §_,) be an element in E,_,(k, s)—E,_s(k, s) such

k=2
that 3. &=0. If(ey, &,,..., &) satisfies the following condition:
i=0+1

=2
2. ete te,SMy(L, smY, 4
j=z

where z=[0/2], e¥f=max {&;, ¢5_,_;} (i=z, z+1,...,6—2) and e¥=e¢, if § is odd, then
there exists an ¢-1E set ing (0, g,,..., & ;).
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Proor. Two cases must be considered, i.c., g=0 and 1£q<4—1 where k=
dm+1)—q.

Case (I) when g=0 (i.e., k=4(m+1)). Let Y; (i=1,2,...,n) be {({—1)m+
¢ —2}-flats obtained in Corollary.

We prove this theorem about only the case when J is even, because the proof in
other case is similar to the case when J is even.

First, choose p-flats V4 (u=06—1,9d;j=1,2,...,¢,) in Y, (k=1,2,...,1) where
t=g;+¢5_1. In the case &<é;_;_; (z£i<6~2),let Vi and V3~1~i be an i-flat and a
(6—1—i)flat in Y, such that Vin Vi 1-i=¢ for j=1, 2,...,& Let V3 1=i be a
(6—1—i)flat in Y, for j=g+1, ¢+2,...,€5_,-;. In the case g=e;_,_; we can
also choose flats V% (1=p<d;j=1,2,...,8,) which are elements of an ¢-IE set.
The inequality (4) implies that there exists an £-1E sets in (0, g,,..., &_,).

Case (I when 12g<¢—1(ie, k=4¢(m+1)—¢q). LetGbe an {4(m+1)—q—1}-
flats in PG(4(m+1)—1,s). Choose (u+q)-flats Vite (1susk-2,j=1,2,..,8,)
contained in PG(4(m+1)—1, s) which were obtained in Case (I). Put Ui=GnVita
forall pandj. Then, Z={U4} (1=pu<k-2;j=1,2,..,¢,)is a required set, because
G can be identified with PG(4(m+1)—qg—1, s). This completes the proof.

Put k=4(m+1)—q (m=0,0=q=<¢—1) and 6=[(bk—k—28)/4]=(£—Dm+
k—2
£—2—q. Inthecase Y} ¢=p(21), let usdenote by d+e; (i=1, 2,..., p) p integers
i=6+1
such that

86 +1 €6 +2 Ek -2

0+1,0+1,..,0+1;0+2,6+2,...,0+2;...; k=2, k=2,.... k=2

where 1<e, e, < <e,<k—2.

Pute,+e,+---+e,=e. Then, we have

THEOREM 2. Let (g, ¢,,..., §._,) be an element in E,_,(k, s)—E,_5(k, s) such
k=2

that 12 3 e(=p)S¢-2. If £-pZ22, t=[e/({—p]21 and (&, &,..., &_;)
i=é+1

satisfies the following condition:

d—e—2 P
2 e+ Y grpSM(4, s (5)
i=z i=d—e—1
and
)
X =M, (¢—p,5) (6)
i=d—e+1

where z=[(0—e)2], ef=max{e;, &5_._,_;} (i=z,z+1,...,6—e—2) and e*=¢, if
0—e is odd, then there exists an ¢-1E set in (0, ¢,,..., &_ ).

THEOREM 3. Let (g4, &,,..., &-2) be an element in E,_,(k, s)—E,_(k, s) such
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k=2
that Y, ¢=4~—1. If(g,, €,..., &_,) satisfies the following condition:
i=d+1

v-2
Z 8’;+8v—1+8v+g_1éMﬂ(€’ sm+l)’ (7)
j=z

where v=30—e,, z=[v/2] and ef=max {g; e, _;} (i=z,z+1,...,v—=2) and e¥=¢,
if v is odd, then there exists an ¢-1E set in (0, €y,..., &_>).

In order to Theorems 2 and 3, we prepare a lemma. Let V;(i=1, 2,..., p)and V;
(j=p+1, p+2,..,¢) are {(£—1)m+£—2+e¢)}-flats and {(£—1)m+£—2—e¢;}-flats
in PG (4(m+1)—1, s), respectively, such that V;nV,n---n¥V,nV,. n---nV,=4¢.
Then it follows from Proposition 4 that ¢; (i=1, 2,..., ) must be integers satisfying the
following condition:

e, te,t+te, e, te, 0 te. ®)

Let ¢; (i=1, 2,..., £—1) be integers such that 1<e,<e,<---Se,<m and ‘0§
epi15€,,25Se,_;. Put ey=max {(e;+e;+---+e,) —(e41te, 2t +e_y),
e,-;}. Then, it is easy to see that e,, e,,..., ¢, are integers which satisfy the inequality
(8) and e,,;Ze,,,<---Ze,_;Ze,. Put e t+e,+--+e,=e and [e/({—-p)]=T.
Then we have

LEMMA. Ift2=1and £ —p=2, then there exists an £-1E set consists of {(£—1)m
+4-2+e}-flats V; (i=1,2,...,p), {(6—Dm+£-2—¢j}-flats Q; (j=p+1, p+2,...,
£-1), {({—U)m+4—-2—e)}-flats R, (k=4,¢+1,...,A+p) and {({—1)m+4—
2—e}-flats T, (n=A+p+1, A+p+2,...,7) in PG(d(m+1)—1,s) where e;<e, A=
M,_(¢—p,s?), n=M(£, s**') and A+p<m.

ProoF. Let Y¥ (t=1, 2,..., n) be m-flats given in the proof of Proposition 3.
Let U; and V¥ be an (e;— 1)-flat and an (m —e;)-flat in Y¥, respectively, such that U; n
Vi=¢ fori=1,2,..,p. Let W be the flat generated by Uy, U,,..., U, i.e., W=U,®
U,®---®U,. Then, itis easy to see that Wis an (e—1)-flat where e=¢, +e,+ - +e¢,,
because dim(YX@Yi®---@Yf)=¢m+¢—1 for any flats Y (j=1,2,..., %)
in {Y}}. Let e=(£—p)t+f (0<f<¥€—p). Then we can choose an (e—f—1)-flat
W, and a (f—1)-flat W, in Wsuch that W, n W,=¢. Then we can obtain a set of (t—1)-
flats D; (i=p+1, p+2,..., A+p) in W, such that dim(D; ®D;,®--®D;,_)=e—f—
1=(¢{—p)t—1 for any flats D;, D,,..., D;,_, in {D,} (i=p+1, p+2,...,A+p) where
A=M,_,(£-p, s").

We now prove this lemma by separating two cases.

Case (I) e—(e, 1 te,rrtte,_)>e (e, e,=e—(e,,+e,,,+ - +e, )

Put g—p=|{j: 05e;St—1}| and r—g=|{j: e;=1}|.

]
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(i) Case 0se;=t—1 (p+1=j<g). Let B; and F; be an (e;—1)-flat and a
(t—1—ej)-flat in D, respectively, such that B;nF;=¢ and put Q¥=B;@Y?* for j=
p+1,p+2,..,9

(i) Casee;=t(g+1<j<r). Put Q¥=D,;®Y*forj=g+1,g9+2,..,r

(i) Case t+1=e;su (r+1=<j<¢). Let F; be a (1—1—e¢))-flat obtained in
(i) and let a4+, (n=1,2,...,7—e¢;) be a basis of F; for j=p+1, p+2,....,g where
6,+1=0and g;= IZI (t—e) (p+2=5j=9g). Since e;=e— (ep+1+ep+2+ tep_y)=
(¢— p)t+f—(e,,+,+e,,+2+ “+e,_y) i, (£—prt=e,—f+e,, 1+ +e,_, and e;=
t(j=g+1,g+2,...,r), it follows that (t—e,, )+ - +(1—e)+(1—¢, )+ +(1—¢,)
+r—e )t H(r—e_)+H(t—e )+ (t—e) =(€—p)t—(e,r1+e€pir+ - +e,_y)
—e, implies

> (t—e)=(e,—f—1)+ Z (e;—1).

i=p+1

Put K;=a,,41,@84,+2®@ " ®a e, for i=r+1, r+2,.,¢—1 and put
Ky=a4,,+1,@8+2)® @agy1ey-y-r) Where o, =0and g;= i:;_ll (e—1)(r+2=
jse-1).

Let Q¥=D;®K;®Y* for j=r4+1,r+2,..., £—1 and let R}=D,®K,+W,®DY¥
for k=4¢, ¢+1,...,A+p and let T¥=Y*@W for n=A+p+1, A+p+2,....n. It is
easily to see that Q% (j=p+1, p+2,..., £—1) is an (m+e;)-flat and R} is an (m+e,)-
flat. Let V;, Q;, Ry and T, be the dual space of V¥, Q%, R} and T}, respectively, for
each i, j, k and n. Let Z={V}U{Q;} U{R,}U{T,}. Then & is a required set.

Case (I1) e—(e,41+e, 2+ +e,_)Se,_; (e, eg=e,_).

Similary, it can be shown that Lemma also holds in this case. This completes
the proof.

[ProoFs OoF THEOREMS 2 and 3]. From lemma, we can easily prove Theorems 2
and 3 similary to Theorem 1. So we omit the proofs of Theorems 2 and 3.

As an application of Theorems 1, 2 and 3, we shall study 4-IE sets in 770, ¢,,...,
&-2) Where (g,..., &_,) € E;(k, s)—E,(k, s). Let K, be a set of (g, &,..., &_,) in
k—2
E,(k, s)—E,(k, s) such that 3 ¢=p. Then we know that 0<p<3.
i=é+1

PROPOSITION 7. For each ordered set (g, &,,..., &) in K, or K5, there exists a
4-1E set in T(0, &4, €5,..., &_3).

ProOF. We prove this theorem for only K, because the proof for K; is similar
to that for K.

Case (I) when ¢=0 (i.e.,, k=4(m+1)). It is sufficient to show that there exists a
4-1E set in 7(0, &y,..., &_,) for the case &, =s—1, e, =5—1,..., &34 ,=5—1 and &=0
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(i=3m+3,...,4m+2).
By computing the left hand in (4), we have
) 3m+2
ng gj= ,;z (s—1)=(3m+4)/2)(s—1) or (B3m+5)/2)(s—1)
according as m is even or not, because z=(3m+2)/2 or z=(3m+1)/2 according as
m is even or not.
Since M (4, smt1)=sm*1+1, m=1 and s=2, we have (3m+5)/2)(s—1)<sm* 14 1.
It follows from Theorem 1 that there exists a 4-IE set in (G, &,,..., &-,) for the case
g,=s5—1,e,=s5—1,...,83,42=5—1 and =0 (i=3m+3,..., 4m+2).
Case (II) when 1<g<3. The proof in this case is similar to that in Case (II)
in Theorem 1. Thus we have the required results. This completes the proof.

PROPOSITION 8. Let (g,, €,,..., &_,) be an element in K,. If 122, then there

exists a 4-1E set in 7(0, ¢,,..., &_,) where t=[e/3].

PrOOF. We prove this proposition about only the case when g=0, because the
proof in another case is similar to that in the case (II) in Theorem 1.

In this case, we now prove this proposition by separating two cases e— (e, +e3)>e;
ore—(e,+ey)Sey (e, e,=e—(e,+e3)) or ez=ey).

(i) The case e—(e,+e3)>e; (ie, eg=e—(e,+e3)).

It is sufficient to show that there exists a 4-IE set in (0, &, &,,..., &_,) for g, =
S—1, 3miz—e,=5—1, €3mi2-e;=1, €3my2-0,=1, E3ps24.,, =1 and g=0 for any
other integer i where 1<i<k—2. Since 122, we have 6<e<m. This implies that
the left hand of (5) is less than or equall to M, (4, s™*!). By computing left hand in
(6), it follows that

Hﬁﬂ gi=(ey+e3) (5— 1)+ 22 26(s— 1)+ 2< M4(3, 59)

because M;(3, s)=s"+2 or s°+ 1 according as s is even or not.

PROPOSITION 9.  Let (g, €,,..., &-,) be an element in K. For 1=0, there exists
a 4-1E set in T(0, ¢4,..., &_,) where t=[e/3].

Proor. (I) Thecasee=1. If e—(e,+e;)>e;, we have e;,=0, e;=0and e,=1
since 0<e,<e;=<e,. Therefore, it is sufficient to show that there exists 4-/E set in
T(0, &,..., &_,) for the case €3,43=1, €3,12=2, €3ps1=5—1,...,,=s—1. It is
noticed that this case occurs for s=3. Since 3+2(s—1)+[(3m—14+1)/2](s—1)=
s™t14+ 1, we can get the required set by similar arguments mentioned in the proof of
Lemma. If e~—(e,+e3)<e;, we have e;=e/3, i.e., e321. In this case, it is sufficient
to prove this proposition for the case e,=0and e;=1 (or e,=1and e;=1). Similarly
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to the above case, we can get the required set.

(I) The case e=2. The proof of this case is similar to that in the case e=1
except the case e,=0, e;=1 and e,=1 (s=3).

In the case case e, =0, ¢;=1and e, =1, it is sufficient to show that there exists 4-IE
set in 7(0, ,,..., &) for the case 3,44 =1, €304 2=1, €3y 1 =5—1,..., 8, =s—1. Let
{Y#} be flats given in Proposition 3. Let V¥ and W* be an (m —2)-flat and a 1-flat in
YT such that V¥ n W*=¢. Let us denote all the points of W* by Q; (i=1, 2,..., s+ 1).
Let V{34 and V{3"*2) be the dual spaces of V¥ and Y%, respectively. Let V{(3m+1
(i=1,2,..., s—1) be the dual space of Y} ,®Q;. We can choose other flats {m+2-9
(i=2,.,3m+1,j=1,..,5—1)in Y¥ (j=s+2, s+3,...) so that (Ve 1=spu=s3m+4,
px3m+3, j=1, 2,...,¢,) is a 4-IE set since 24+2(s—1)+[(3m—1)/2]<sm1+1.
This completes the proof.

PROPOSITION 10. Let (g, &,,..., &_,) be an element in K,. For t=1, there
exists.a 4-1E set in 70, ¢,,..., §_,) where 1=[e¢/3].

ProoF. Two cases must be considered (i.e., g=0and 1<g<¢4—1)

We prove this proposition about only the case g=0.

(I) The case e=3. If e—(e,+e;)>e;, then since 0<e,<e,, it is sufficient to
consider the following two cases, that is,

(a) e,=0,e;=0and ¢,=3

(b) e;=0,e;=1and e,=2

Case (a). Since e=3, we get m=3. This shows that 3+2(s—1)+[(3m—2)/2]-
(s—1)=sm*14+1. By similar arguments in the proof of lemma we can show that there
exists a 4-IE set in 7(0, &,,..., §,_,) for all (¢,..., §_,) in K,.

Case (b). The proof of this case is similar to that of the case e=2 in Proposition
9. So we omit it.

If e—(e;+e3)<e;, then we have e;>1 since 0<e,<e;. On the other hand, it is
sufficient to consider the case e;<2. This case is separated as follows:

(a) e;=1ande;=1, (b) e,=0and e;=2,

(c) e,;=1and e;=2, (d) e,=2and e;=2.

Case (a). It is sufficient to show that there exists a 4-IE set in 7(0, &,,..., &_,)
for the case e, =s—1, g,=5—2,..., 63,41 =5—1, E3m45=1.

Let Y¥ (i=1, 2,..., n) be an m-flat given in Proposition 3. Let V'* and W* be an
(m—3)-flat and a 2-flat in Y¥ such that V¥n W*=¢. Let{Q;} (i=1, 2,...,s) be a 3-
independent set W* and let L; (i=1, 2,..., s— 1) be points passing through the point
O, Put Rf=Y%,®Q;, Tf=Y}X,®L; for i=1,2,..,s—1 and put U¥=Y¥,_, ,®
W* for j=1, 2,..., m—2s+1. LetV,, R, T,and U, be the dual space of V¥, R¥, T*and
U}, respectively foralli and j. Put V> =V, V{(3m*D<Rand Vpm=T, LetV3im—r
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(r=1,2;j=1,2,...,5—1) be a 3m—r)flat in U, (n=1,2,...,25=2). If 3m—3 is
even, then ford=1,2,...,zand j=1, 2,..., s—1, let V=29 and V4 be a 3m—2—d)-
flat and a d-flat in U, (k=2s—1, 2s,..., z(s—1)+2(s— 1)) such that V(3»=2-d nyi=¢
where z=(3m—3)/2. Since 1+4(s—1)+z(s—1)<s"*'+1, we have the required set.
We can also easily get the required set when 3m —3 is odd.

In the case (b), (c) or (d), the proof is similar to that in the above cases in this
proposition. So it is omitted here.

(II) The case e=4. If e—(e,+e3)=e,, then it is sufficient to consider the fol-
lowing four cases, that is,

(a) e;=0,e;=0and e,=4, (b) e,=0,e;=1and e,=3.

(c) e;,=0,e3=2and e,=2, (d) e,=1,e3=1and e,=2.

The proof of Case (a) or (b) is similar to that of case (a) or (b) in the case e=3.
So we omit them.

Case (c). Let Y¥(i=1,2,..., n) be an m-flat given in Proposition 3 and let W¥* be
a 3-flat in Y¥. Let W* be a 2-flat contained in W¥ and let X be a point in W¥ but not
contained in W*. Let {Q;} (i=1, 2,...,s) be a 3-independent set in W* and let L,
(i=1,2,...,5—1) be points passing through the point Q,, Put R}=Y}%,®0,;®X,
Tf=Y%,®L®X for i=1,2,..,s—1. Then, similarly to the proof of Case (a) in
(I), we can get the required 4-1E set which contains R; and T, for i=1, 2,..., s—1 where
R; and T, denotes the dual space of R¥ and T#, respectively.

In the case (d), we can get the required 4-/E set similarly to the case (a) in the case
e=4,

(III) The case e=5. The proof of this case is omitted, because it is also similar
to the cases e=3 and e=4.
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