On the Ten-Node Interpolation Using Taylor Expansions

Fumikazu Tamari and Hiroki Yanagiwara

Department of Information Education, Fukuoka University of Education

and

Emeritus Professor at Fukuoka University of Education

(Received October 1, 2007)

Abstract

When we solve the initial value problem of ordinary differential equations, if we attempt to cut the step size in half using the ten-node central value interpolation formula, we find that it is not possible to cut the five nodes at the top and the bottom in half. The purpose of this paper is to produce formulas for the five nodes at the top and the bottom using Taylor expansions.

The errors at the top and the bottom are bigger than the errors at the center. Therefore, at the top and the bottom it is preferable to use the twelve-node interpolation formula, presented in [2]

1. Introduction

Using the Predictor-Corrector method, we have been studying the initial value problem for first order ordinary differential equations. Iterations of the corrector are terminated when the difference between the new value and the previous value becomes less than the previously fixed value. As the iterated values start to deviate from the true value, we need halve the step size, after the number of iteration is more than the previously fixed value. So we used the fourth order Bessel central difference formula to cut the step size in half. However, the big error remains after corrections by the corrector. For this reason, we want to make the high order interpolation formula, using the Taylor expansion.

In Section 2, we explain our point of view. In Section 3, we explain how to save effort by using some cancellations. In Section 4, we will develop our method. In Section 5, we consider the ralation between "the positive direction k and the negative direction k formula" and "the positive direction k and the negative direction k formula". In Sections 6 to 11, various cases of interpolation formulas are obtained. In Section 12 and Table 1, we summarize the values for finish side formulas. The values for top side formulas are summarized in Table 2, and the values of our interpolation formulas are summarized in Table 3.

2. A method of obtaining the interpolation formula

When we consider a linear combination of f((2i-1)h/2), i = 1, 2, ..., 4; i = 0, -1, -2, ..., -5, we denote by 10^{+4}_{-6} the interpolation formula obtained from positive direction 4 nodes and negative direction 6 nodes. This will be described below.

The Taylor expansion for

$$c_1 f(h/2) + c_2 f(-h/2) + c_3 f(3h/2) + c_4 f(-3h/2) + c_5 f(5h/2) + c_6 f(-5h/2)$$

$$+c_{7}f(7h/2)+c_{8}f(-7h/2)+c_{9}f(-9h/2)+c_{10}f(-11h/2)$$

(here c_i are coefficients of the linear combination,) is equal to

$$(\sum_{i=1}^{10} c_i)f(0) + (c_1 - c_2 + 3(c_3 - c_4) + 5(c_5 - c_6) + 7(c_7 - c_8) - 9c_9 - 11c_{10})hf'(0)/2$$

$$+ (c_1 + c_2 + 3^2(c_3 + c_4) + 5^2(c_5 + c_6) + 7^2(c_7 + c_8) + 9^2c_9 + 11^2c_{10})h^2f''(0)/(2! \times 2^2)$$

$$+ (c_1 - c_2 + 3^3(c_3 - c_4) + 5^3(c_5 - c_6) + 7^3(c_7 - c_8) - 9^3c_9 - 11^3c_{10})h^3f^{(3)}(0)/(3! \times 2^3)$$

$$+ (c_1 + c_2 + 3^4(c_3 + c_4) + 5^4(c_5 + c_6) + 7^4(c_7 + c_8) + 9^4c_9 + 11^4c_{10})h^4f^{(4)}(0)/(4! \times 2^4)$$

$$+ (c_1 - c_2 + 3^5(c_3 - c_4) + 5^5(c_5 - c_6) + 7^5(c_7 - c_8) - 9^5c_9 - 11^5c_{10})h^5f^{(5)}(0)/(5! \times 2^5)$$

$$+ (c_1 + c_2 + 3^6(c_3 + c_4) + 5^6(c_5 + c_6) + 7^6(c_7 + c_8) + 9^6c_9 + 11^6c_{10})h^6f^{(6)}(0)/(6! \times 2^6)$$

$$+ (c_1 - c_2 + 3^7(c_3 - c_4) + 5^7(c_5 - c_6) + 7^7(c_7 - c_8) - 9^7c_9 - 11^7c_{10})h^7f^{(7)}(0)/(7! \times 2^7)$$

$$+ (c_1 + c_2 + 3^8(c_3 + c_4) + 5^8(c_5 + c_6) + 7^8(c_7 + c_8) + 9^8c_9 + 11^8c_{10})h^8f^{(8)}(0)/(8! \times 2^8)$$

$$+ (c_1 - c_2 + 3^9(c_3 - c_4) + 5^9(c_5 - c_6) + 7^9(c_7 - c_8) - 9^9c_9 - 11^9c_{10})h^9f^{(9)}(0)/(9! \times 2^9)$$

$$+ (c_1 + c_2 + 3^{10}(c_3 + c_4) + 5^{10}(c_5 + c_6) + 7^{10}(c_7 + c_8) + 9^{10}c_9 + 11^{10}c_{10})h^1f^{(10)}(0)/(10! \times 2^{10})$$

$$+ \cdots$$

Here, we set

$$\sum_{i=1}^{10} c_i = 1, \sum_{i=1}^{4} (2i-1)^j (c_{2i-1} + (-1)^j c_{2i}) + (-1)^j (9^j c_9 + 11^j c_{10}) = 0, j = 1, 2, ..., 9.$$

Then we obtain the following 10^{+4}_{-6} interpolation formula:

$$\begin{split} f(0) &= c_1 f(h/2) + c_2 f(-h/2) + c_3 f(3h/2) + c_4 f(-3h/2) + c_5 f(5h/2) + c_6 f(-5h/2) \\ &+ c_7 f(7h/2) + c_8 f(-7h/2) + c_9 f(-9h/2) + c_{10} f(-11h/2). \end{split}$$

Here, the error term is the term for $f^{(10)}(0)$. In this way, we obtain ten-node interpolation formulas.

3. The 10^{+5}_{-5} formula, using 5 nodes in the positive direction and 5 nodes in the negative direction

From the Taylor expansion:

$$y(ih/2)=y(0)+(ih/2)y'(0)+(ih/2)^2y''(0)/2!+...,i=-9,-7,-5,-3,-1,1,3,5,7,9,$$
 we obtain
$$y(ih/2)+y(-ih/2)=2(y(0)+(ih/2)^2y''(0)/2!+(ih/2)^4y^{(4)}(0)/4!+\cdots).$$

Here, we have no odd order term. So, we obtain the following equation:

$$\begin{split} c_5f(-9h/2) + c_4f(-7h/2) + c_3f(-5h/2) + c_2f(-3h/2) + c_1f(-h/2) \\ + c_1f(h/2) + c_2f(3h/2) + c_3f(5h/2) + c_4f(7h/2) + c_5f(9h/2) \\ &= 2(\sum_{i=1}^5 c_i)f(0) + 2(c_1 + 3^2c_2 + 5^2c_3 + 7^2c_4 + 9^2c_5)(h/2)^2f''(0)/2! \\ + 2(c_1 + 3^4c_2 + 5^4c_3 + 7^4c_4 + 9^4c_5)(h/2)^4f^{(4)}(0)/4! + 2(c_1 + 3^6c_2 + 5^6c_3 + 7^6c_4 + 9^6c_5)(h/2)^6f^{(6)}(0)/6! \\ + 2(c_1 + 3^8c_2 + 5^8c_3 + 7^8c_4 + 9^8c_5)(h/2)^8f^{(8)}(0)/8! + 2(c_1 + 3^{10}c_2 + 5^{10}c_3 + 7^{10}c_4 + 9^{10}c_5)(h/2)^{10}f^{(10)}(0)/10! \\ + 2... \end{split}$$

Solving the following equations:

$$\begin{split} &2(c_1+c_2+c_3+c_4+c_5)=1,\quad c_1+3^2c_2+5^2c_3+7^2c_4+9^2c_5=0,\\ &c_1+3^4c_2+5^4c_3+7^4c_4+9^4c_5=0,\quad c_1+3^6c_2+5^6c_3+7^6c_4+9^6c_5=0,\\ &c_1+3^8c_2+5^8c_3+7^8c_4+9^8c_5=0, \end{split}$$

we have the following values:

$$c_1 = 39690/2^{16}, \quad c_2 = -8820/2^{16}, \quad c_3 = 2268/2^{16} \quad c_4 = -405/2^{16} \quad c_5 = 35/2^{16}.$$

Using these c_i , i = 1,2,...,5, we obtain the following interpolation formula:

$$f(0) = (39690(f(h/2) + f(-h/2)) - 8820(f(3h/2) + f(-3h/2)) + 2268(f(5h/2) + f(-5h/2)) - 405(f(7h/2) + f(-7h/2)) + 35(f(9h/2) + f(-9h/2)))/65536,$$

where the error term is

$$\begin{split} &-2(c_1+3^{10}c_2+5^{10}c_3+7^{10}c_4+9^{10}c_5)\frac{h^{10}}{10!\times 2^{10}}f^{(10)}(\xi)\\ &=-3^2*7h^{10}f^{(10)}(\xi)/2^{18}=-63h^{10}f^{(10)}(\xi)/262144. \end{split}$$

4. The 10^{+4}_{-6} formula, using 4 nodes in the positive direction and 6 nodes in the negative direction

From the Taylor expansion, we have the following equation:

$$\begin{split} c_{10}f(-11h/2) + c_9f(-9h/2) + c_8f(-7h/2) + c_6f(-5h/2) + c_4f(-3h/2) \\ + c_2f(-h/2) + c_1f(h/2) + c_3f(3h/2) + c_5f(5h/2) + c_7f(7h/2) \\ = (\sum_{i=1}^{10} c_i)f(0) + (c_1 - c_2 + 3(c_3 - c_4) + 5(c_5 - c_6) + 7(c_7 - c_8) - 9c_9 - 11c_{10}) (h/2)f'(0) \end{split}$$

$$+(c_{1}+c_{2}+3^{2}(c_{3}+c_{4})+5^{2}(c_{5}+c_{6})+7^{2}(c_{7}+c_{8})+9^{2}c_{9}+11^{2}c_{10})(h/2)^{2}f''(0)/2!$$

$$+(c_{1}-c_{2}+3^{3}(c_{3}-c_{4})+5^{3}(c_{5}-c_{6})+7^{3}(c_{7}-c_{8})-9^{3}c_{9}-11^{3}c_{10})(h/2)^{3}f^{(3)}(0)/3!$$

$$+(c_{1}+c_{2}+3^{4}(c_{3}+c_{4})+5^{4}(c_{5}+c_{6})+7^{4}(c_{7}+c_{8})+9^{4}c_{9}+11^{4}c_{10})(h/2)^{4}f^{(4)}(0)/4!+\cdots$$

$$+(c_{1}-c_{2}+3^{9}(c_{3}-c_{4})+5^{9}(c_{5}-c_{6})+7^{9}(c_{7}-c_{8})-9^{9}c_{9}-11^{9}c_{10})(h/2)^{9}f^{(9)}(0)/9!$$

$$+(c_{1}+c_{2}+3^{10}(c_{2}+c_{4})+5^{10}(c_{5}+c_{6})+7^{10}(c_{7}+c_{9})+9^{10}c_{9}+11^{10}c_{10})(h/2)^{2}f^{(10)}(0)/10!+\cdots$$

Solving the following simultaneous equations:

$$\begin{split} &\sum_{i=1}^{10} c_i = 1, \ c_1 - c_2 + 3(c_3 - c_4) + 5(c_5 - c_6) + 7(c_7 - c_8) - 9c_9 - 11c_{10} = 0, \\ &c_1 + c_2 + 3^2(c_3 + c_4) + 5^2(c_5 + c_6) + 7^2(c_7 + c_8) + 9^2c_9 + 11^2c_{10} = 0, \\ &c_1 - c_2 + 3^3(c_3 - c_4) + 5^3(c_5 - c_6) + 7^3(c_7 - c_8) - 9^3c_9 - 11^3c_{10} = 0, \dots, \\ &c_1 + c_2 + 3^8(c_3 + c_4) + 5^8(c_5 + c_6) + 7^8(c_7 + c_8) + 9^8c_9 + 11^8c_{10} = 0, \\ &c_1 - c_2 + 3^9(c_3 - c_4) + 5^9(c_5 - c_6) + 7^9(c_7 - c_8) - 9^9c_9 - 11^9c_{10} = 0, \end{split}$$

we have the following values:

$$\begin{split} c_1 &= 32340/2^{16}, \ c_2 = 48510/2^{16}, \ c_3 = -4620/2^{16}, \ c_4 = -16170/2^{16}, \ c_5 = 693/2^{16}, \\ c_6 &= 6468/2^{16}, \ c_7 = -55/2^{16}, \ c_8 = -1980/2^{16}, \ c_9 = 385/2^{16}, \ c_{10} = -35/2^{16}. \end{split}$$

From these c_i , i = 1, 2, ..., 10, we obtain the following interpolation formula:

$$f(0) = (32340f(h/2) + 48510f(-h/2) - 4620f(3h/2) - 16170f(-3h/2) + 693f(5h/2) + 6468f(-5h/2) \\ -55f(7h/2) - 1980f(-7h/2) + 385f(-9h/2) - 35f(-11h/2))/65536,$$
 and the error term:

$$\begin{split} &-(c_1+c_2+3^{10}(c_3+c_4)+5^{10}(c_5+c_6)+7^{10}(c_7+c_8)+9^{10}c_9+11^{10}c_{10})h^{10}f^{(10)}(\xi)/(10!\times 2^{10})\\ &=7*11h^{10}f^{(10)}(\xi)/2^{18}=77h^{10}f^{(10)}(\xi)/262144. \end{split}$$

5. The 10^{+6}_{-4} formula, using 6 nodes in the positive direction and 4 nodes in the negative direction

In the same way in Section 4, i.e, the 10^{+4}_{-6} formula, we get the following simultaneous

$$\sum_{i=1}^{10} c_i = 1, \ c_1 - c_2 + 3(c_3 - c_4) + 5(c_5 - c_6) + 7(c_7 - c_8) + 9c_9 + 11c_{10} = 0,$$

$$c_1 + c_2 + 3^2(c_3 + c_4) + 5^2(c_5 + c_6) + 7^2(c_7 + c_8) + 9^2c_9 + 11^2c_{10} = 0,$$

$$c_1-c_2+3^3(c_3-c_4)+5^3(c_5-c_6)+7^3(c_7-c_8)+9^3c_9+11^3c_{10}=0,.....,$$

$$c_1 - c_2 + 3^9(c_3 - c_4) + 5^9(c_5 - c_6) + 7^9(c_7 - c_8) + 9^9c_9 + 11^9c_{10} = 0.$$

Here, for $1 \le k \le 4$, the $10^{+k}_{-(10-k)}$ formula and the $10^{+(10-k)}_{-k}$ formula have same

$$\sum_{i=1}^{k} (2i-1)^{2j} (c_{2i-1} + c_{2i}) + (2k+1)^{2j} c_{2k+1} + \cdots + (19-2k)^{2j} c_{10} = 0, j = 0, 1, \dots, 4,$$

and on the other hand, in the $10^{+k}_{-(10-k)}$ formula we have

$$\sum_{i=1}^{k} (2i-1)^{2j-1} (c_{2i-1}-c_{2i}) - (2k+1)^{2j-1} c_{2k+1} - \cdots - (19-2k)^{2j-1} c_{10} = 0, j = 1, 2, \dots, 5,$$

but in the $10^{+(10-k)}_{-k}$ formula we get

$$\sum_{i=1}^{k} (2i-1)^{2j-1} (c_{2i-1}-c_{2i}) + (2k+1)^{2j-1} c_{2k+1} + \cdots + (19-2k)^{2j-1} c_{10} = 0, j = 1, 2, \dots, 5,$$

After eliminating $(c_{2i-1}-c_{2i})$, i=1,2,...,k, the equations that determine the coefficients of the $10^{+k}_{-(10-k)}$ formula have the form $ac_{2k+1}+\cdots+ec_{10}=0$. Similarly, the equations for the $10^{+(10-k)}_{-k}$ formula become $-ac_{2k+1}-\cdots-ec_{10}=0$. The right hand side is equal to zero, so these two equations are equal.

Each interpolation formula has the same $c_{2k+1},...,c_{10}$, and $c_{2i-1},i=1,2,...,k$, replace each other with $c_{2i},i=1,2,...,k$, respectively.

From these reasons, we have the following values:

$$c_1 = 48510/2^{16}, \ c_2 = 32340/2^{16}, \ c_3 = -16170/2^{16}, \ c_4 = -4620/2^{16}, \ c_5 = 6468/2^{16},$$

$$c_6 = 693/2^{16}, \ c_7 = -1980/2^{16}, \ c_8 = -55/2^{16}, \ c_9 = 385/2^{16}, \ c_{10} = -35/2^{16}.$$

From these c_i , i = 1, 2, ..., 10, we obtain the following interpolation formula:

$$f(0) = (48510f(h/2) + 32340f(-h/2) - 16170f(3h/2) - 4620f(-3h/2) + 6468f(5h/2)$$

$$+693f(-5h/2)-1980f(7h/2)-55f(-7h/2))+385f(9h/2)-35f(11h/2))/65536$$

and the error term : $77h^{10}f(10)(\xi)/2^{18}$.

6. The 10^{+3}_{-7} formula, using 3 nodes in the positive direction and 7 nodes in the negative direction

In the same way in Section 4, we have the following equations:

$$\sum_{i=1}^{10} c_i = 1, \ c_1 - c_2 + 3(c_3 - c_4) + 5(c_5 - c_6) - 7c_7 - 9c_8 - 11c_9 - 13c_{10} = 0$$

$$c_1 + c_2 + 3^2(c_3 + c_4) + 5^2(c_5 + c_6) + 7^2c_7 + 9^2c_8 + 11^2c_9 + 13^2c_{10} = 0,...,$$

$$c_1 - c_2 + 3^9(c_3 - c_4) + 5^9(c_5 - c_6) - 7^9c_7 - 9^9c_8 - 11^9c_9 - 13^9c_{10} = 0.$$

Solving these equations, we get the following values:

$$c_1 = 25740/2^{16}, \ c_2 = 60060/2^{16}, \ c_3 = -2145/2^{16}, \ c_4 = -30030/2^{16}, \ c_5 = 143/2^{16},$$

$$c_6 = 18018/2^{16}, \; c_7 = -8580/2^{16}, \; c_8 = 2860/2^{16}, \; c_9 = -585/2^{16}, \; c_{10} = 55/2^{16}.$$

Using these values, we obtain the following formula:

$$f(0) = (25740 f(h/2) + 60060 f(-h/2) - 2145 f(3h/2) - 30030 f(-3h/2) + 143 f(5h/2)$$

$$+18018f(-5h/2)-8580f(-7h/2)+2860f(-9h/2)-585f(-11h/2)+55f(-13h/2))/65536$$
, and the error term: $-11*13h^{10}f^{(10)}(\xi)/2^{18} = -143h^{10}f^{(10)}(\xi)/262144$.

7. The 10^{+7}_{-3} formula, using 7 nodes in the positive direction and 3 nodes in the negative direction

From Section 6, i.e., the 10^{+3}_{-7} formula, we obtain the following values :

$$c_1 = 60060/2^{16}, \ c_2 = 25740/2^{16}, \ c_3 = -30030/2^{16}, \ c_4 = -2145/2^{16}, \ c_5 = 18018/2^{16},$$

$$c_6 = 143/2^{16}, \ c_7 = -8580/2^{16}, \ c_8 = 2860/2^{16}, \ c_9 = -585/2^{16}, \ c_{10} = 55/2^{16}.$$

Thus we have the following interpolation formula:

$$f(0) = (60060 f(h/2) + 25740 f(-h/2) - 30030 f(3h/2) - 2145 f(-3h/2) + 18018 f(5h/2)$$

$$+143f(-5h/2)-8580f(7h/2)+2860f(9h/2)-585f(11h/2)+55f(13h/2))/65536$$

and the error term : $-143h^{10}f^{(10)}(\xi)/2^{18}$.

8. The 10^{+2}_{-8} formula, using 2 nodes in the positive direction and 8 nodes in the negative direction

In the same way in Section 4, we get the following equations:

$$\sum_{i=1}^{10} c_i = 1, \ c_1 - c_2 + 3(c_3 - c_4) - 5c_5 - 7c_6 - 9c_7 - 11c_8 - 13c_9 - 15c_{10} = 0,$$

$$c_1 + c_2 + 3^2(c_3 + c_4) + 5^2c_5 + 7^2c_6 + 9^2c_7 + 11^2c_8 + 13^2c_9 + 15^2c_{10} = 0,$$

$$c_1 - c_2 + 3^3(c_3 - c_4) - 5^3c_5 - 7^3c_6 - 9^3c_7 - 11^3c_8 - 13^3c_9 - 15^3c_{10} = 0,$$

$$c_1 + c_2 + 3^4(c_3 + c_4) + 5^4c_5 + 7^4c_6 + 9^4c_7 + 11^4c_8 + 13^4c_9 + 15^4c_{10} = 0, \ldots,$$

$$c_1 - c_2 + 3^9(c_3 - c_4) - 5^9c_5 - 7^9c_6 - 9^9c_7 - 11^9c_8 - 13^9c_9 - 15^9c_{10} = 0.$$

Solving these equations, we have the following values:

$$c_1 = 19305/2^{16}, c_2 = 77220/2^{16}, c_3 = -715/2^{16}, c_4 = -60060/2^{16}, c_5 = 54054/2^{16},$$

$$c_6 = -38610/2^{16}, \ c_7 = 20020/2^{16}, \ c_8 = -7020/2^{16}, \ c_9 = 1485/2^{16}, \ c_{10} = -143/2^{16}.$$

From these values, we have the following interpolation formula:

$$f(0) = (19305f(h/2) + 77220f(-h/2) - 715f(3h/2) - 60060f(-3h/2) + 54054f(-5h/2)$$

$$-38610f(-7h/2) + 20020f(-9h/2) - 7020f(-11h/2) + 1485f(-13h/2) - 143f(-15h/2))/65536,$$
 and the error term is equal to $3*11*13h^{10}f^{(10)}(\xi)/2^{18} = 429h^{10}f^{(10)}(\xi)/262144.$

9. The 10^{+8}_{-2} formula, using 8 nodes in the positive direction and 2 nodes in the negative direction

From Section 8, i.e., 10^{+2}_{-8} formula, we obtain the following values:

$$c_1 = 77220/2^{16}, \ c_2 = 19305/2^{16}, \ c_3 = -60060/2^{16}, \ c_4 = -715/2^{16}, \ c_5 = 54054/2^{16},$$

$$c_6 = -38610/2^{16}, \ c_7 = 20020/2^{16}, \ c_8 = -7020/2^{16}, \ c_9 = 1485/2^{16}, \ c_{10} = -143/2^{16},$$

the following interpolation formula:

$$f(0) = (77220f(h/2) + 19305f(-h/2) - 60060f(3h/2) - 715f(-3h/2) + 54054f(5h/2)$$
$$-38610f(7h/2) + 20020f(9h/2) - 7020f(11h/2) + 1485f(13h/2) - 143f(15h/2))/65536,$$
 and the error term : $429h^{10}f^{(10)}(\xi)/2^{18}$.

10. The 10^{+1}_{-9} formula, using 1 node in the positive direction and 9 nodes in the negative direction

In the same way in Section 4, we have the following equations:

$$\begin{split} &\sum_{i=1}^{10}c_i=1,\ c_1-c_2-3c_3-5c_4-7c_5-9c_6-11c_7-13c_8-15c_9-17c_{10}=0,\\ &c_1+c_2+3^2c_3+5^2c_4+7^2c_5+9^2c_6+11^2c_7+13^2c_8+15^2c_9+17^2c_{10}=0,\\ &c_1-c_2-3^3c_3-5^3c_4-7^3c_5-9^3c_6-11^3c_7-13^3c_8-15^3c_9-17^3c_{10}=0,\\ &c_1+c_2+3^4c_3+5^4c_4+7^4c_5+9^4c_6+11^4c_7+13^4c_8+15^4c_9+17^4c_{10}=0,.....,\\ &c_1-c_2-3^9c_3-5^9c_4-7^9c_5-9^9c_6-11^9c_7-13^9c_8-15^9c_9-17^9c_{10}=0, \end{split}$$

the values:

$$\begin{split} &c_1 = 12155/2^{16}, \ c_2 = 109395/2^{16}, \ c_3 = -145860/2^{16}, \ c_4 = 204204/2^{16}, \ c_5 = -218790/2^{16}, \\ &c_6 = 170170/2^{16}, \ c_7 = -92820/2^{16}, \ c_8 = 33660/2^{16}, \ c_9 = -7293/2^{16}, \ c_{10} = 715/2^{16}, \end{split}$$

the following interpolation formula:

$$f(0) = (12155 f(h/2) + 109395 f(-h/2) - 145860 f(-3h/2) + 204204 f(-5h/2) - 218790 f(-7h/2)$$

+170170f(-9h/2)-92820f(-11h/2)+33660f(-13h/2)-7293f(-15h/2)+715f(-17h/2))/65536, and the error term : $-11*13*17h^{10}f^{(10)}(\xi)/2^{18}=-2431h^{10}f^{(10)}(\xi)/262144.$

11. The 10^{+9}_{-1} formula, using 9 nodes in the positive direction and 1 node in the negative direction

From Section 10, i.e., the 10^{+1}_{-9} formula, we obtain the following values:

$$c_1 = 109395/2^{16}, \ c_2 = 12155/2^{16}, \ c_3 = -145860/2^{16}, \ c_4 = 204204/2^{16}, \ c_5 = -218790/2^{16},$$

$$c_6 = 170170/2^{16}, \ c_7 = -92820/2^{16}, \ c_8 = 33660/2^{16}, \ c_9 = -7293/2^{16}, \ c_{10} = 715/2^{16},$$

the following interpolation formula:

$$f(0) = (109395f(h/2) + 12155f(-h/2) - 145860f(3h/2) + 204204f(5h/2) - 218790f(7h/2)$$

+170170f(9h/2) -92820f(11h/2) +33660f(13h/2) -7293f(15h/2) +715f(17h/2))/65536,

and the error term: $-2431h^{10}f^{(10)}(\xi)/2^{18}$.

12. An example

In Table 1, Table 2, and Table 3, the odd numbers x,y are obtained from a numerical solution of $y'=x^3y$, the initial value y(0)=1, the step size h=0.0625, and the analytical solution is $y=exp(x^4/4)$. i is the number of iterations, y_t is the value of the analytical solution, and $E_y=(y-y_t)\times 10^{10}$.

In Table 1, y_{-6}^{+4} is obtained from the 10_{-6}^{+4} formula, $E_{-6}^{+4} = (y_{-6}^{+4} - y_t) \times 10^{10}$, y_{-7}^{+3} is obtained from the 10_{-7}^{+3} formula, $E_{-8}^{+3} = (y_{-7}^{+3} - y_t) \times 10^{10}$, y_{-8}^{+2} is obtained from the 10_{-8}^{+2} formula, $E_{-8}^{+2} = (y_{-8}^{+2} - y_t) \times 10^{10}$, y_{-9}^{+1} is obtained from the 10_{-9}^{+1} formula, and $E_{-9}^{+1} = (y_{-9}^{+1} - y_t) \times 10^{10}$.

In Table 2, y_{-1}^{+8} is obtained from the 10_{-1}^{+9} formula, $E_{-1}^{+9} = (y_{-1}^{+9} - y_t) \times 10^{10}$, y_{-2}^{+8} is obtained from the 10_{-2}^{+8} formula, $E_{-3}^{+8} = (y_{-2}^{+8} - y_t) \times 10^{10}$, y_{-3}^{+7} is obtained from the 10_{-3}^{+7} formula, $E_{-3}^{+7} = (y_{-3}^{+7} - y_t) \times 10^{10}$, y_{-4}^{+6} is obtained from the 10_{-4}^{+7} formula, and $E_{-4}^{+6} = (y_{-4}^{+6} - y_t) \times 10^{10}$.

In Table 3, the value y_i are the interpolated values, and $E_i = (y_i - y_i) \times 10^{10}$. y_i in Step No.2 of Step Column is obtained using the 10^{+9}_{-1} interpolation formula. Step No.4, 6, and 8 are obtained using the 10^{+8}_{-2} , 10^{+7}_{-3} , and 10^{+6}_{-4} interpolation formulas respectively. No.36, 38, 40, and 42 are obtained from the 10^{+4}_{-6} , 10^{+3}_{-7} , 12^{+2}_{-8} , and 10^{+1}_{-9} , interpolation formulas respectively. No.10, 12, ..., 32, 34 are obtained from the 10^{+5}_{-5} formula.

References

- [1] F. Tamari, R. Tsukamoto, R. Furuki, and H. Yanagiwara, On a New Multistep Method II, Bull. of Fukuoka Univ. of Ed. part III 49 (2000) 1-6.
- [2] F. Tamari and H. Yanagiwara, On the Twelve-Node Interpolation Using Taylor Expansions, Bull. ol Fukuoka Univ. of Ed. part III 57 (2008) 53-62.

Table 1

E_{-9}^{+1}													62		101		169		288		501		886		1609		2977		5634		10923		21719		44353		93174	
y_{-9}^{+1}													1.1350825886		1.1836808403		1.2463067504		1.3267676177		1.4301465411		1.5633561045		1.7359718640		1.9615089986		2.2594149905		2.6582435811		3.2008208388		3.9528497927		5.0175986702	
E_{-8}^{+2}											-2		-2		ကု		4-		rç-		<u></u>		င္		0-		21		83		254		705		1881			
y_{-8}^+											1.0976068922		1.1350825822		1.1836808299		1.2463067331		1.3267675884		1.4301464903		1.5633560151		1.7359717031		1.9615087030		2.2594144354		2.6582425142		3.2008187374		3.9528455455			
E_{-7}^{+3}									7		11		19		32		54		96		172		316		591		1131		2217		4457		9200					
y_{-7}^{+3}									1.0689953629		1.0976068935		1.1350825843		1.1836808334		1.2463067389		1.3267675985		1.4301465082		1.5633560472		1.7359717622		1.96150881340		2.2594146488		2.6582429345		3.2008195869					
E_{-6}^{+4}									2		က		5		6		15		27		49		68		164		310		009		1190							
y_{-6}^{+4}							1.0474596835		1.0689953624		1.0976068927		1.1350825829		1.1836808311		1.2463067350		1.3267675916		1.4301464959		1.5633560245		1.7359717195		1.9615087319		2.2594144871		2.6582426078							
y_t	1.0023870302	1.0049560886	1.0092011609	1.0157477086	1.0253440643	1.0388839092	1.0474596834	1.0574400951	1.0689953622	1.0823142390	1.0976068924	1.1151083428	1.1350825824	1.1578275068	1.1836808302	1.2130271947	1.2463067335	1.2840254167	1.3267675889	1.3752112151	1.4301464910	1.4924986476	1.5633560156	1.6440047112	1.7359717031	1.8410785392	1.9615087009	2.0998924705	2.2594144271	2.4439503417	2.6582424888	2.9081254475	3.2008186669	3.5453078612	3.9528453574	4.4376107817	5.0175893528	5.7157475732
E_{u}	0		_		2	2		3		9		6		15		26		45		81		146		272		516		1003		1998		4084		8577		18534		41265
y	1.0023870302	1.0049560887	1.0092011610	1.0157477087	1.0253440645	1.0388839094		1.0574400954		1.0823142396		1.1151083437		1.1578275083		1.2130271973		1.2840254212		1.3752112232		1.4924986622		1.6440047384		1.8410785908		2.0998925708		2.4439505415		2.9081258559		3.5453087189		4.4376126351		5.7157516997
i	2	က	က	3	3	က		4		4		4		4		4		5		5		2		9		9		9		7		7		∞		8		6
x	0.3125	0.375	0.4375	0.5	0.5625	0.625	0.65625	0.6875	0.71875	0.75	0.78125	0.8125	0.84375	0.875	0.90625	0.9375	0.96875	1.0	1.03125	1.0625	1.09375	1.125	1.15625	1.1875	1.21875	1.25	1.28125	1.3125	1.34375	1.375	1.40625	1.4375	1.46875	1.5	1.53125	1.5625	1.59375	1.625
step		2	ಣ	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38

Fable 2

E_{-4}^{+6}								0-		-1		<u>-</u>		-1		ငှ-		ြင္		-10		-20		-39		-78		-162		-342		-740						
y_{-4}^{+6}								1.0201125437		1.0315586879		1.0474596833		1.0689953621		1.0976068921		1.1350825819		1.1836808292		1.2463067315		1.3267675850		1.4301464832		1.5633559994		1.7359716689		1.9615086269						
E_{-3}^{+7}						ಣ		5		7		13		21		36		64		114		208		388		742		1455		2925								
y_{-3}^{+7}						1.0121430766		1.0201125442		1.0315586887		1.0474596847		1.0689953643		1.0976068960		1.1350825888		1.1836808416		1.2463067543		1.3267676277		1.4301465652		1.5633561611		1.7359719956								
E_{-2}^{+8}				9-		-10		-16		-27		-46		-80		-143		-258		-477		-905		-1745		-3461		-7040										
y_{-2}^{+8}				1.0068327096		1.0121430753		1.0201125421		1.0315586853		1.0474596788		1.0689953542		1.0976068781		1.1350825566		1.1836807825		1.2463066433		1.3267674144		1.4301461449		1.5633553116										
E_{-1}^{+9}		98		28		94		157		266		461		814		1466		2698		5074		9926		19268		39012												
y_{-1}^{+9}		1.0034967896		1.0068327160		1.0121430857		1.0201125594		1.0315587146		1.0474597295		1.0689954436		1.0976070390		1.1350828522		1.1836813376		1.2463077101		1.3267695157		1.4301503922												
y_t	1.0023870302	1.0034967860	1.0049560886	1.0068327102	1.0092011609	1.0121430763	1.0157477086	1.0201125437	1.0253440643	1.0315586880	1.0388839092	1.0474596834	1.0574400951	1.0689953622	1.0823142390	1.0976068924	1.1151083428	1.1350825824	1.1578275068	1.1836808302	1.2130271947	1.2463067335	1.2840254167	1.3267675889	1.3752112151	1.4301464910	1.4924986476	1.5633560156	1.6440047112	1.7359717031	1.8410785392	1.9615087009	2.0998924705	2.4439503417	2.9081254475	3.5453078612	4.4376107817	5.7157475732
E_y	0		Η		_				2		2		က		9		6		15		26		45		81		146		272		516		1003	1998	4084	8577	18534	41265
y	1.0023870302		1.0049560887		1.0092011610		1.0157477087		1.0253440645		1.0388839094		1.0574400954		1.0823142396		1.1151083437		1.1578275083		1.2130271973		1.2840254212		1.3752112232		1.4924986622		1.6440047384		1.8410785908		2.0998925708	2.4439505415	2.9081258559	3.5453087189	4.4376126351	5.7157516997
i	2		က		က		3		3		က		4		4		4		4		4		2		2		വ		9		9		9	7	7	∞	∞	6
x	0.3125	0.34375	0.375	0.40625	0.4375	0.46875	0.5	0.53125	0.5625	0.59375	0.625	0.65625	0.6875	0.71875	0.75	0.78125	0.8125	0.84375	0.875	0.90625	0.9375	0.96875	1.0	1.03125	1.0625	1.09375	1.125	1.15625	1.1875	1.21875	1.25	1.28125	1.3125	1.375	1.4375	1.5	1.5625	1.625
step	1	2	က	4	2	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	53	30	31	32	33	34	35	36	37	38

Table 3

step	x	i	y	E_y	y_t	y_i	E_i
1	0.3125	2	1.0023870302	0	$\frac{g_t}{1.0023870302}$	<i>31</i>	-1
2	0.34375	_	1.00200.0002	Ŭ	1.0034967860	1.0034967896	36
3	0.375	3	1.0049560887	1	1.0049560886	1,000100,000	
4	0.40625		2,002000007	_	1.0068327102	1.0068327096	-6
5	0.4375	3	1.0092011610	1	1.0092011609		
6	0.46875			_	1.0121430763	1.0121430766	3
7	0.5	3	1.0157477087	1	1.0157477086		
8	0.53125				1.0201125437	1.0201125437	-0
9	0.5625	3	1.0253440645	2	1.0253440643		
10	0.59375				1.0315586880	1.0315586882	2
11	0.625	3	1.0388839094	2	1.0388839092		
12	0.65625				1.0474596834	1.0474596838	4
13	0.6875	4	1.0574400954	3	1.0574400951		
14	0.71875				1.0689953622	1.0689953629	7
15	0.75	4	1.0823142396	6	1.0823142390		
16	0.78125				1.0976068924	1.0976068935	11
17	0.8125	4	1.1151083437	9	1.1151083428		
18	0.84375				1.1350825824	1.1350825844	20
19	0.875	4	1.1578275083	15	1.1578275068		
20	0.90625				1.1836808302	1.1836808336	34
21	0.9375	4	1.2130271973	26	1.2130271947		
22	0.96875				1.2463067335	1.2463067394	59
23	1.0	5	1.2840254212	45	1.2840254167		
24	1.03125				1.3267675889	1.3267675995	106
25	1.0625	5	1.3752112232	81	1.3752112151		
26	1.09375				1.4301464910	1.4301465103	193
27	1.125	5	1.4924986622	146	1.4924986476		
28	1.15625				1.5633560156	1.5633560517	361
29	1.1875	6	1.6440047384	272	1.6440047112		
30	1.21875				1.7359717031	1.7359717717	686
31	1.25	6	1.8410785908	516	1.8410785392		
32	1.28125				1.9615087009	1.9615088348	1339
33	1.3125	6	2.0998925708	1003	2.0998924705		
34	1.34375				2.2594144271	2.2594146951	2680
35	1.375	7	2.4439505415	1998	2.4439503417		
36	1.40625				2.6582424888	2.6582426078	1190
37	1.4375	7	2.9081258559	4084	2.9081254475		
38	1.46875				3.2008186669	3.2008185869	-800
39	1.5	8	3.5453087189	8577	3.5453078612		
40	1.53125				3.9528453574	3.9528455455	1881
41	1.5625	8	4.4376126351	18534	4.4376107817	- 04000-00	
42	1.59375		E #4###4 0000	44.00=	5.0175893528	5.0175986702	93174
43	1.625	9	5.7157516997	41265	5.7157475732		