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Abstract

Studies of the intersection of two operator balls are useful for solving some completion problem of 
partial operator matrices. In this paper we study the condition which the intersection of two operator balls 
is trivial or the closed unit ball. Further, we apply to the 2 £ 2 contractive and positive completion problem.

1. Introduction

Let H be a complex Hilbert space and B(H) denote the Banach algebra of all bounded linear operators 
on H. For selfadjoint operators on H, we shall consider the order is given by positive-deniteness. So an 
operator A 2 B(H) is said to be positive if hAx, xi ¸ 0 for all x 2 H. Here h¢, ¢ i denotes the inner product on H. 
For selfadjoint operators A, B 2 B(H), A · B means that B ¡ A is positive. A ¯ B means that B ¡ A is 
positive and A 6= B.

We denote by B the set of all contractions on H, that is

B = fK 2 B(H) ; kKk · 1g.

Here kKk denotes the operator norm of K 2 B(H). For two operators A, B 2 B(H), we define

K(A, B) = fAKB ; K 2 Bg

which will be called a operator ball.
For a given partial operator matrix (some entries are specified and some are free), completion problems 

ask whether there exists a completion satisfying some condition. Contractive completion problems and 
positive completion problems are studied by many mathematicians. In [5], G. N½vdal and H.J. Woerdeman 
consider the following completion problem. Let A and B are given selfadjoint contractions on H, that is A = A¤,  
B = B¤, kAk · 1, and kBk · 1, then find operator X 2 B(H) which satisfies

A X
X¤ B

· 1 i.e. ¡ I 0
0 I · A X

X¤ B · I 0
0 I .

Here I denotes the identity operator on H. Using a well-known characterization of 2 £ 2 positive operator 
matrix (see e.g. [2]), X satisfies

I ¡A X
X¤ I ¡B ¸ 0
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if and only if X 2 K((I ¡ A)1=2, (I ¡ B)1=2). Hence the solution set of this completion problem is the 
intersection of two operator balls K((I ¡ A)1=2, (I ¡ B)1=2) and K((I + A)1=2, (I + B)1=2). The authors 
study the intersection of two operator balls and above completion problems in the finite dimensional case.

In this paper, we shall consider an alternative approach to studies of the intersection of two operator 
balls and some completion problems.

2. Preliminaries

The structure of operator balls is studied by Ju.L. Smul’jan (see e.g. [6]). First, let us recall the 
inclusion of operator balls.

Theorem 1 Let A, B, C, and D be non-zero operators on H. Then K(A, B) ½ K(C, D) holds if and only if 
there exists a positive number ½ such that

AA¤ · ½ CC¤,    B¤B · ½ ¡1 D¤D.

Hence K(A, B) = K(C, D) holds if and only if there exists a positive number ½ such that

AA¤ = ½ CC¤,    B¤B = ½¡1 D¤D.

For an operator ball K(A, B), the operators A and B are called its left and right radii, respectively. By 
Theorem 1, for any operator A and B, we have

K(A, B) = K(jA¤j, jBj)

where jA¤j = (AA¤)1=2 and jBj = (B¤B)1=2. So we may assume that left and right radii of operator balls 
are always positive.

In Section 3, we shall need the parallel sum of two positive operators. Let A and B be positive operators 
on H. Since A · A + B and B · A + B, by a result of R.G. Douglas (see e.g. [3]) there are uniquely 
determined operators C, D 2 B(H) such that

A1=2 = (A + B)1=2C,   ker(A + B)1=2 ½ kerC¤
and

B   1=2 = (A + B)1=2D,   ker(A + B)1=2 ½ kerD¤.

Here ker T denotes the kernel of an operator T 2 B(H). We define the operator

A : B = A1=2C¤DB   1=2

which will be called the parallel sum of A and B.
The parallel sum A : B is a positive operator on H and satisfies the following properties.

	 (i)	A : B = B : A.
	 (ii)	A : B · A and A : B · B.
	 (iii)	If A + B is invertible, then A : B = A(A + B){1B = B(A + B){1A.
	 (iv)	ran(A : B)1=2 = ran A1=2 \ ran B   1=2.
Here ran T denotes the range of an operator T 2 B(H).

For a further discussion of the parallel sum, we refer the reader to [1] and [4].
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3. Intersection of two operator balls and completion problem

In this section, we shall consider the condition which the intersection of two operator balls is trivial or 
the closed unit ball. Further, we apply the result to the 2 £ 2 contractive and positive completion problem 
where the diagonal entries are specified. First we consider the trivial case.

Theorem 2 Let A, B, C, and D be positive operators on H. The intersection of two operator balls K(A, B) 
and K(C, D) is trivial, if and only if either A2 : C   2 = 0 or B   2 : D   2 = 0.

Proof. We shall prove that K(A, B)\   K(C, D)6= f0g if and only if A2 : C   2 6= 0 and B   2 : D   2 6= 0.
Suppose that K(A, B)\   K(C, D) 6= f0g, then there is a non-zero operator X which belongs to 

K(A, B)\   K(C, D). Hence there exist contractions K, L 2 B(H) such that

X = AKB = CLD.

Since X is a non-zero operator,

ran(A2 : C   2)1=2 = ran   A \ ran   C 6= f0g

and hence we obtain A2 : C   2 6= 0. Similarly, from BK¤A = DL¤C 6= 0, we obtain B   2 : D   2 6= 0.
Conversely suppose that A2 : B   2 6= 0 and C   2 : D   2 6= 0. Then both (A2 : C   2)1=2 and (B   2 : D   2)1=2 are non-zero 

operators, and hence there exists a contraction K such that

(A2 : C   2)1=2K(B   2 : D   2)1=2 6= 0.

Since A2 : C   2 · A2 and B   2 : D   2 · B   2, by virtue of Theorem 1 we obtain

K((A2 : C   2)1=2, (B   2 : D   2)1=2) ½ K(A, B).

Similarly we obtain K((A2 : C   2)1=2, (B   2 : D   2)1=2) ½ K(C, D) and hence

K((A2 : C   2)1=2, (B   2 : D   2)1=2) ½ K(A, B) \ K(C, D).

This proves K(A, B) \ K(C, D) 6= f0g.    ¤

By the proof of Theorem 2, if K(A, B) \ K(C, D) 6= f0g, then K(A, B) \ K(C, D) contains a non-trivial 
operator ball K((A2 : C   2)1=2, (B   2 : D   2)1=2).

We apply Theorem 2 to the some completion problem. For given contractive and positive operators 
A, B 2 B(H), we consider the contractive and positive completion problem of the partial operator matrix

A (1)?
? B

where ? means unspecified entries. Obviously, zero operator is a solution of this completion problem, so we 
consider the trivial case.
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Corollary 3 Let A, B be contractive and positive operators on H. The solution set of the completion problem 
(1) is trivial, that is

X 2 B(H); 0 · A X
X¤ B · I 0

0 I = f0g

if and only if either of A or B is an orthogonal projection.

Proof. For an operator X 2 B(H), the operator matrix

A X
X¤ B (2)

is positive if and only if X 2 K(A1=2, B   1=2). The operator matrix (2) is contractive if and only if 
X 2 K((I ¡ A)1=2, (I ¡ B)1=2). So we have

X ; 0 · A X
X¤ B · I 0

0 I = K(A1=2, B1=2)\K((I ¡A)1=2 , (I ¡B)1=2).

From Theorem 2, the intersection of K(A1=2, B1=2) and K((I ¡ A)1=2, (I ¡ B)1=2) is trivial if and only if either 
A : (I ¡ A) = 0 or B : (I ¡ B) = 0. Since A : (I ¡ A) = A ¡ A2, this completes the proof.    ¤

For given two operator balls, if one ball is the closed unit ball B and the other ball contains B then the 
intersection of these operator balls is B. We shall prove that the converse is true.

Theorem 4 Let A, B, C, and D be positive operators on H. If the intersection of two operator balls K(A, B) 
and K(C, D) is the closed unit ball B, then either K(A, B) = B or K(C, D) = B.

Proof. Suppose that the intersection of K(A, B) and K(C, D) is the closed unit ball B, that is 

K(A, B) \ K(C, D) = B.

Since both K(A, B) and K(C, D) contain B, we may assume that A2 ¸ I, B   2 ¸ I, C   2 ¸ I, and D   2 ¸ I. We 
shall show that if K(A, B) 6= B and K(C, D) 6= B then there is a contradiction to K(A, B) \ K(C, D) = B.

We assume that K(A, B) 6= B and K(C, D) 6= B. Then K(A, B) ) B implies

A2 ° I or B   2 ° I

and similarly K(C, D)) B implies

C   2 ° I or D   2 ° I.

So we may consider following two cases.
(Case 1) We shall consider the case A2 ° I and C 2 ° I. By assumption, there exist ® 2 (0, 1) and rank 

one projections P, Q 2 B(H) such that
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I + ®P · A2 , I +
®

1¡®Q · C2 .
 

Since 0 < ® < 1, we obtain

I + ®Q · I +
®

1¡®Q · C2 .

(i) If P = Q, then I + ®P · A2 and I + ®P · C   2, and hence we have

(I + ®P)1=2 2 K(A, I) \ K(C, I) ½ K(A, B) \ K(C, D).

But (I + ®P)1=2 is not a contraction, so this is a contradiction.

(ii) If PQ = 0, then ran P is orthogonal to ranQ and P + Q is an orthogonal projection. So we consider 
matrix representations on ran P © ranQ, then

P =
1 0
0 0

, Q =
0 0
0 1

.

Put

¯ = (I+ ®P)¡1=2 1 1
1 1 = (I+ ®Q)¡1=2 1 1

1 1 = 2 (1+ ®)¡1 +1

and

K1 =
1
¯

(I + )¡1=2 1 1
1 1 , K 2 =

1
¯

(I + ®Q)¡1=2 1 1
1 1 ,®P

then K1 and K2 are contractions. We consider the operator

X =
1
¯

1 1
1 1

then

X = (I + ®P)1=2K1 = (I + ®Q)1=2K2 2 K((I + ®P)1=2, I) \ K((I + ®Q)1=2, I)

and hence X 2 K(A, B) \ K(C, D). However, since ¯ < 2, X is not a contraction. So this is a contradiction.

(iii) We shall suppose that P 6= Q and PQ 6= 0. Consider the polar decomposition

	 (I ¡ ®Q)1=2(I + ®P)1=2 = V R� (3)

where V is a unitary operator on H and R = j(I ¡ ®Q)1=2(I + ®P)1=2j.
If we assume that R · I, then R2 · I and hence
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(I + ®P)1=2(I ¡ ®Q)(I + ®P)1=2 · I    i.e.    I ¡ ®Q · (I + ®P)¡1.

Since (I ¡ ®Q)¡1 = I + ®(1 ¡ ®)¡1Q, we obtain

I + ®P · (I¡®Q)¡1 = I +
®

1¡®Q i.e. P · 1
1¡®Q.

But this contradicts P 6= Q, so R 6· I. The similar argument provides R 6¸ I.
We shall consider matrix representations on the subspace M which generated by ran P and ran   Q. 

Since R 6· I and R 6¸ I, there exist ¸; ¹ 2 (0, 1) and unitary operator U on M such that

(4)R = U ¸¡1 0
0 ¹

U¤ .

By computing the trace of R   2 = (I + ®P)1=2(I ¡ ®Q)(I + ®P)1=2      ; 

trR   2 = tr (I + ®P)(I ¡ ®Q) = tr I ¡ ®2 tr PQ < 2,

so we obtain ¸¡2 + ¹2 < 2. By using (3) and (4) we can define

X =( I + ®P)1=2 U ¸ 0
0 1 =( I ¡®Q)¡1=2 VU 1 0

0 ¹
.

Since (I ¡ ®Q)¡1 = I + ®(1 ¡ ®)¡1Q, we obtain

X = I +
®

1¡®
Q
1=2

VU 1 0
0 ¹

and hence

X 2 K((I + ®P)1=2, I) \ K((I + ®(1 ¡ ®)¡1Q)1=2, I) ½ K(A, B) \ K(C, D).

But X is not a contraction, so this is a contradiction. In fact, if X is a contraction, then X¤X · I and hence

¸ 0
0 1 U¤(I + ®P)U ¸ 0

0 1 =
1 0
0 ¹

U¤V¤(I¡®Q)¡1VU 1 0
0 ¹

· I.

Put eP = U¤PU and eQ = U¤V¤QVU, then

I + · ¸ 0
0 1

¡1
¸ 0
0 1

¡1
=

¸¡2 0
0 1®P

and

(I ¡®Q)¡1 · 1 0
0 ¹¡2

, i.e. I ¡®Q ¸ 1 0
0 ¹2

.
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Since eP and eQ are rank one projections, we can obtain that

P =
1 0
0 0 , Q =

0 0
0 1 .

Thus

¸ 0
0 1 (I + ®P) ¸ 0

0 1 =
1 0
0 ¹

(I ¡®Q)¡1 1 0
0 ¹

,

which implies

¸2(1 + ®)
0 1 =

1 0
0 ¹2(1¡®)¡1

0

and hence ¸2 = (1 + ®)¡1 and ¹2 = 1 ¡ ®. This contradicts ¸¡2 + ¹2 < 2, so X is not a contraction.
In the case of B   2 ° I and D   2 ° I, there is a contradiction similarly.

(Case 2) We shall consider the case A2 ° I and D   2 ° I. By assumption, there exist ® 2 (0, 1) and rank 
one projections P, Q such that

I + ®P · A2,   I + ®Q · D2.

Since (I + ®P)1=2 is unitarily similar to (I + ®Q)1=2, there exists a unitary operator U such that 

U¤(I + ®P)1=2U = (I + ®Q)1=2.

Put X = (I + ®P)1=2U = U(I + ®Q)1=2, then

X 2 K((I + ®P)1=2, I) \ K(I, (I + ®Q)1=2)

and hence X 2 K(A, B) \ K(C, D). But X is not a contraction, so this is a contradiction.
In the case of B   2 ° I and C   2 ° I, there is a contradiction similarly.    ¤
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