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Abstract. We introduce the concept of valuations of Lie algebras and com-
pletions of valued Lie algebras. We show that if (L, | · |) is a valued Lie algebra

then there is the unique completion (L∗, | · |∗) up to isomorphism. We show
that if a subalgebra H of L is a weak subideal of L (resp. a subideal of L, finite-
dimensional, soluble, nilpotent) then its topological closure H∗ in (L∗, | · |∗)
is a weak subideal of L∗ (resp. a subideal of L∗, finite-dimensional, soluble,

nilpotent). We also introduce valuations |·| of the generalized Witt algebra WZ
and present some properties of (W ∗

Z , | · |). Finally we illustrate the completion
of (WZ, | · |) with a specific example.

Introduction

The study of valuations of fields was initiated in connection with the arithmetic
of number fields. In this paper we shall introduce the concept of valuations of Lie
algebras, and refer to the pair (L, | · |) of a Lie algebra L and a valuation | · | of L as
a valued Lie algebra. The purpose of this paper is first to investigate elementary
properties of valued Lie algebras, and secondly to investigate further properties of
valuations of generalized Witt algebras over any field of characteristic zero.

In Section 2 we shall introduce the concept of valued Lie algebras and their
completions, and prove that every valued Lie algebra has the unique completion up
to isomorphism (Theorem 5).

In Section 3 we shall prove that if H is an n-step weak subideal (resp. subideal)
of a Lie algebra L then the topological closure H∗ in the complete metric space
(L∗, | · |) is also an n-step weak subideal (resp. subideal) of L∗, and that if H
is a finite-dimensional (resp. soluble, nilpotent) subalgebra of L then H∗ is also
finite-dimensional (resp. soluble, nilpotent) (Theorem 10).

In Section 4 we shall first introduce valuations | · | of generalized Witt algebras
WG over any field k of characteristic zero, where G is a non-trivial subgroup of the
additive group k ∩ R, and secondly prove that every non-zero weak subideal of WZ
is a dense subset of the complete metric space (W ∗

Z , | · |) (Theorem 12).
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In Section 5 we shall construct a new Lie algebras W−∞ containing the general-
ized Witt algebra WZ over a field k of characteristic zero, and prove that (W−∞, | · |)
is complete and WZ is a dense subset of the metric space (W−∞, | · |) (Theorem 15).

1. Notation and terminology

Throughout the paper we are always concerned with Lie algebras which are not
necessarily finite-dimensional over an arbitrary field k unless otherwise specified.
Notation and terminology is mainly based on [1]. In this section we explain some
symbols and terms which we use here.

The symbol Z (resp. R) denotes the ring of integers (resp. the field of real
numbers). For a field k, the symbol k× denotes the set of all non-zero elements of
k, that is, k× means the multiplicative group of k.

Let L be a Lie algebra over k and n a non-negative integer. The symbol H ≤ L
(resp.H ▹ L) denotes thatH is a subalgebra (resp. an ideal) of L. Angular brackets
⟨ ⟩ denotes the subalgebra generated by their contents. In [3] a subalgebra H of L
is said to be an n-step weak subideal of L, which is denoted by H ≤n L, provided
there exists an ascending chain (Hi)i�n of subspaces of L such that

(a) H0 = H and Hn = L,
(b) [Hi+1, H] ⊆ Hi (0 � i < n).

Then the chain (Hi)i�n is said to be a weak series from H to L. In particular,

(Hi)i�n is a series from H to L and H is an n-step subideal of L, denoted by

H ▹n L, provided Hi ▹ Hi+1 ≤ L (0 � i < n). H is said to be a weak subideal
(resp. a subideal) of L, denoted by H wsi L (resp. H si L), if H ≤n L (resp.
H ▹n L) for some integer n � 1. Let ω be the least limit ordinal. Furthermore, in
[3] a subalgebra H of L is said to be an ω-step weakly ascendant subalgebra of L,
which is denoted by H ≤ω L, provided there exists an ascending chain (Hi)i�ω of

subspaces of L such that
(a) H0 = H and Hω = L,
(b) [Hi+1, H] ⊆ Hi (0 � i < ω),
(c) Hω = ∪i<ωHi.
A class X is a collection of Lie algebras together with their isomorphic copies

and 0-dimensional Lie algebras. The symbol F (resp. An, eA,Nn,N) denotes the
class of Lie algebras which are finite-dimensional (resp. soluble of derived length
� n, soluble, nilpotent of class � n, nilpotent).

2. VALUED LIE ALGEBRAS AND THEIR COMPLETIONS

In this section we shall introduce the concept of valued Lie algebras and their
completions.

Let L be a Lie algebra over k. We say that a mapping x �→ |x| from L to R is a
(non-Archimedian) valuation of L if the mapping satisfies the following conditions
(i) – (iv), where x, y ∈ L and α ∈ k×:

(i) |x| > 0 except that |0| = 0.
(ii) |αx| = |x|.
(iii) |x+ y| � max{|x|, |y|}.
(iv) |[x, y]| � |x||y|.

Then we simply denote by | · | the mapping x �→ |x| and say that the pair (L, | · |)
is a valued Lie algebra.
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A valuation | · | of L is non-trivial if |x| ̸= |y| for some non-zero elements x, y of
L. Every Lie algebra has a trivial valuation. In fact, let c ∈ R and c � 1. Then we
can easily define a trivial valuation | · | of L by |x| = c (x ̸= 0) and |0| = 0.

Let (L, | · |) be a valued Lie algebra. We can define a metric function δ on L
by δ(x, y) = |x − y| (x, y ∈ L). Regard (L, | · |) as a metric space with respect
to δ. Let {xn}n�1 be a sequence of elements of L and let x ∈ L. As usual, we

say that {xn}n�1 is a Cauchy sequence in (L, | · |) if limm,n→∞ |xm − xn| = 0,

and that {xn}n�1 is a convergent sequence in (L, | · |) with limit x, denoted by

limn→∞ xn = x, if limn→∞ |xn − x| = 0. Furthermore, we say that (L, | · |) is a
complete valued Lie algebra if every Cauchy sequence in (L, | · |) is a convergent
sequence. That is, a valued Lie algebra (L, | · |) is complete if (L, | · |) is a complete
metric space.

Example 1. Let X be an abelian Lie algebra over k with basis {xi : i = 0, 1, . . . }
and σ a derivation of X such that x0σ = 0 and xiσ = xi−1 (i � 1). Form the split
extension L = X � ⟨σ⟩ of X by ⟨σ⟩. For any element

x = λnxn + · · ·+ λ0x0 + λ−1σ

of L (where n � 0 and λi ∈ k (−1 � i � n)), we define

max(x) =




n if λn ̸= 0,

−1 if λi = 0 (0 � i � n) and λ−1 ̸= 0,

−∞ if λi = 0 (−1 � i � n).

Then it is not hard to see that the mapping x �→ max(x) satisfies the following
conditions (i) – (iii), where x, y ∈ L and α ∈ k×:

(i) max(αx) = max(x).
(ii) max(x+ y) � max{max(x),max(y)}.
(iii) max([x, y]) � max(x) + max(y).

Hence we can define a non-trivial valuation | · | of L by |x| = 2max(x) (x ∈ L). Then
for any non-zero element x of L we have |x| � 2−1. Thus (L, | · |) is a complete
valued Lie algebra.

We begin with the following lemma, which presents a property of convergent
sequences of a valued Lie algebra.

Lemma 2. Let F be the free Lie algebra on a countably infinite set {t1, t2, . . . } and
w = w(t1, . . . , tr) a word of F in variables t1, . . . , tr (cf. [1, p. 274]). Let (L, | · |)
be a valued Lie algebra and {xi,n}n�1 a convergent sequence in (L, | · |) with limit

xi ∈ L (1 � i � r). Then {w(x1,n, . . . , xr,n)}n�1 is a convergent sequence in (L, | · |)
with limit w(x1, . . . , xr).

Proof. Clearly we may assume that w is a monomial word of type [t1, . . . , ts]. We
use induction on s to show that

lim
n→∞

[x1,n, . . . , xs,n] = [x1, . . . , xs].

It is trivial for s = 1. Let s � 1 and suppose that the result is true for s. There
exists a real number M > 0 and an integer n0 � 1 such that |xs+1,n| < M for all
n � n0. Then for any n � n0 we have
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|[x1,n, . . . , xs,n, xs+1,n]− [x1, . . . , xs, xs+1]|

� max{|[[x1,n, . . . , xs,n]− [x1, . . . , xs], xs+1,n]|, |[[x1, . . . , xs], xs+1,n − xs+1]|}
� max{|[x1,n, . . . , xs,n]− [x1, . . . , xs]||xs+1,n|, |[x1, . . . , xs]||xs+1,n − xs+1|}
� max{M |[x1,n, . . . , xs,n]− [x1, . . . , xs]|, |[x1, . . . , xs]||xs+1,n − xs+1|}.

Therefore limn→∞[x1,n, . . . , xs,n, xs+1,n] = [x1, . . . , xs, xs+1]. This completes the
proof. �

Let (L, | · |) be a valued Lie algebra over k. We define the completion of (L, | · |)
to be a complete valued Lie algebra (L∗, | · |∗) satisfying the following conditions (i)
– (iii):

(i) L ≤ L∗.
(ii) |x|∗ = |x| for all x ∈ L.
(iii) L is a dense subset of the metric space (L∗, | · |∗).
Let (L1, | · |1) and (L2, | · |2) be valued Lie algebras over k. A Lie isomorphism

θ from L1 onto L2 is an isomorphism from (L1, | · |1) onto (L2, | · |2) if θ is an
isometric mapping from the metric space (L1, | · |1) to the metric space (L2, | · |2)
(i.e. |x|1 = |θ(x)|2 for all x ∈ L1). Then we usually say that (L1, | · |1) is isomorphic
to (L2, | · |2), denoted by (L1, | · |1) ∼= (L2, | · |2).

Lemma 3. Let (L∗, | · |∗) be the completion of a valued Lie algebra (L, | · |) over
k and let (L∼, | · |∼) be a complete valued Lie algebra over k. Assume that there
exists a Lie monomorphism θ from L to L∼ such that |x| = |θ(x)|∼ for all x ∈ L.
Then there exists one and only one Lie monomorphism θ∗ from L∗ to L∼ such that
θ∗|L = θ and |x∗|∗ = |θ∗(x∗)|∼ for all x∗ ∈ L∗.

Proof. Let x∗ ∈ L∗. Since L is a dense subset of the metric space (L∗, | · |∗),
there exists a convergent sequence {xn}n�1 in (L∗, | · |∗) with limit x∗ such that

xn ∈ L for all n � 1. Then {θ(xn)}n�1 is a Cauchy sequence in (L∼, | · |∼). Since

(L∼, | · |∼) is complete, there exists one and only one element x∼ of L∼ such that
limn→∞ θ(xn) = x∼. Then we can define a map θ∗ from L∗ to L∼ by θ∗(x∗) = x∼.
In fact, let {x′

n}n�1 be another convergent sequence in (L∗, | · |∗) with limit x∗ such

that x′
n ∈ L for all n � 1. Then for all n � 1

|θ(x′
n)− x∼|∼ � max{|x′

n − xn|, |θ(xn)− x∼|∼}
� max{|x′

n − x∗|∗, |x∗ − xn|∗, |θ(xn)− x∼|∼}.

Hence we have limn→∞ θ(x′
n) = x∼.

Let y∗ ∈ L∗ and let {yn}n�1 be a convergent sequence in (L∗, | · |∗) with limit

y∗ such that yn ∈ L for all n � 1. Let α, β ∈ k. Then by Lemma 2 we have
limn→∞(αxn + βyn) = αx∗ + βy∗ and limn→∞[xn, yn] = [x∗, y∗]. Hence

θ∗(αx∗ + βy∗) = lim
n→∞

θ(αxn + βyn)

= lim
n→∞

{αθ(xn) + βθ(yn)}

= αθ∗(x∗) + βθ∗(y∗)
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and

θ∗([x∗, y∗]) = lim
n→∞

θ([xn, yn])

= lim
n→∞

[θ(xn), θ(yn)]

= [θ∗(x∗), θ∗(y∗)].

Therefore θ∗ is a Lie homomorphism. Moreover, we have

|x∗|∗ = lim
n→∞

|xn| = lim
n→∞

|θ(xn)|∼ = |θ∗(x∗)|∼.

It follows that θ∗ is a Lie monomorphism from L∗ to L∼. Clearly we have θ∗|L = θ.
Finally, suppose that there exists another Lie monomorphism θ′ from L∗ to L∼

such that θ′|L = θ and |x∗|∗ = |θ′(x∗)|∼ for all x∗ ∈ L∗. Then for all n � 1

|θ∗(x∗)− θ′(x∗)|∼ � max{|θ∗(x∗)− θ∗(xn)|∼, |θ′(xn)− θ′(x∗)|∼}
= |xn − x∗|∗.

Thus we obtain θ∗ = θ′. �

Next let us construct the completion of a valued Lie algebra (L, | · |) over
k. We denote by CS(L) the collection of all Cauchy sequences in (L, | · |). Let
{xn}n�1, {yn}n�1 ∈ CS(L) and let {xn}n�1 ∼ {yn}n�1 mean that limn→∞ |xn −
yn| = 0. Then the relation ∼ is an equivalence relation on CS(L). Let {xn}∗n�1

denote the equivalence class represented by {xn}n�1 ∈ CS(L) and let L∗ denote

the collection of all ∼-equivalence classes. Let α ∈ k. As in the proof of Lemma 2,
it is easy to show that {xn + yn}n�1, {αxn}n�1, {[xn, yn]}n�1 ∈ CS(L). Therefore

we can define an addition, a scalar multiplication and a bracket product in L∗ as
follows:

{xn}∗n�1 + {yn}∗n�1 = {xn + yn}∗n�1,

α{xn}∗n�1 = {αxn}∗n�1,

[{xn}∗n�1, {yn}
∗
n�1] = {[xn, yn]}∗n�1.

It is not hard to see that these operations are well defined and make L∗ a Lie
algebra over k. Furthermore, the original Lie algebra L is naturally imbedded in
L∗ by identifying an element x of L with the equivalence class {x}∗ represented by
the constant sequence {x}n�1. Hence we regard L as a subalgebra of L∗.

Let {xn}∗n�1
∈ L∗. Since {|xn|}n�1 is a convergent sequence in R, a real-valued

function |{xn}∗n�1
| on L∗ is well defined by |{xn}∗n�1

| = limn→∞ |xn|. Then we can

easily verify that the function |{xn}∗n�1
| on L∗ is a valuation of L∗ and the original

valuation | · | of L is naturally extended to this valuation of L∗.
Moreover, we have the following

Lemma 4. (1) L is a dense subset of the metric space (L∗, | · |).
(2) (L∗, | · |) is a complete valued Lie algebra over k.

Proof. (1) Let x∗ = {xn}∗n�1
∈ L∗. For each integer m � 1 let x∗

m denote the

element of L represented by the constant sequence {xm}n�1. Since {xn}n�1 ∈
CS(L) and

|x∗
m − x∗| = |{xm − xn}∗n�1| = lim

n→∞
|xm − xn|,
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we have limm→∞ x∗
m = x∗. Therefore L is a dense subset of the metric space

(L∗, | · |).
(2) Let {x∗

n}n�1 be a Cauchy sequence in (L∗, | · |). Given ε > 0, an integer

n0 � 1 can be found with the property that |x∗
m − x∗

n| < ε for all m,n � n0. Since
L is a dense subset of the metric space (L∗, | · |), for each integer n � 1 there exists
an element yn of L such that |yn − x∗

n| < ε. Then for all m,n � n0 we have

|ym − y∗| = |{ym − yn}∗n�1| = lim
n→∞

|ym − yn| � 3ε.

Thus we have limm→∞ x∗
m = y∗. Therefore (L∗, | · |) is a complete valued Lie

algebra. �
By combining Lemmas 3 and 4, we can deduce the following theorem, which is

the main result of this section.

Theorem 5. Every valued Lie algebra has the unique completion up to isomor-
phism.

3. ELEMENTARY PROPERTIES OF VALUED LIE ALGEBRAS

In this section we present some elementary properties of valued Lie algebras.
Let (L, | · |) be a valued Lie algebra over k. As in §2 we simply denote the

completion of (L, | · |) by (L∗, | · |) from now on. For each subset X of L∗ we denote
by X∗ the topological closure in the metric space (L∗, | · |). In particular, if X is a
subspace of L∗ then so is X∗. A subset X of L∗ is said to be closed in (L∗, | · |),
provided X∗ = X.

Next, let H ≤ L∗. Then (H, | · |) is a valued Lie algebra, where | · | means that
the restriction of the valuation of L∗ to H. Furthermore, we can clearly see that
(H, | · |) is a complete valued Lie algebra if and only if H is closed in (L∗, | · |).

We begin with the following lemma, which is the Lie-theoretic analogue of the
same result for normed linear spaces.

Lemma 6. Let X be a subspace of L∗ and assume that X is closed in (L∗, | · |). If
x0 ∈ L∗\X, then X + ⟨x0⟩ is closed in (L∗, | · |).

Proof. Let x0 ∈ L∗\X and let {yn}n�1 be a convergent sequence in (L∗, | · |) with
limit y∗ ∈ L∗ such that yn ∈ X + ⟨x0⟩ for all n � 1. Then it suffices to prove that
y∗ ∈ X + ⟨x0⟩. For each integer n � 1 there exist zn ∈ X and αn ∈ k such that
yn = zn − αnx0. Since X is closed in (L∗, | · |), we can find a real number ε > 0
such that |x− x0| � ε for all x ∈ X. Moreover, there exists an integer n0 � 1 such
that |ym − yn| < ε for all m,n � n0. Now we suppose that there exist integers
m,n � n0 such that αm ̸= αn and m ̸= n. Since 1

αm−αn
(zm − zn) ∈ X, we have

|ym − yn| = |(zm − zn)− (αm − αn)x0|

=

∣∣∣∣
1

αm − αn
(zm − zn)− x0

∣∣∣∣ � ε.

This is a contradiction. Hence αm = αn for all m,n � n0. It follows that
limm,n→∞ |zm − zn| = limm,n→∞ |ym − yn| = 0. Therefore we have {zn}n�1 ∈
CS(L∗). Since zn ∈ X for all n � 1 and X is closed in (L∗, | · |), we can find an
element z∗ of X such that limn→∞ zn = z∗. Then for each n � n0 we have

lim
n→∞

|yn − (z∗ − αn0x0)| = lim
n→∞

|zn − z∗| = 0.
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Thus we obtain y∗ = limn→∞ yn = z∗ − αn0x0 ∈ X + ⟨x0⟩. �
The following proposition is the first main result of this section.

Proposition 7. Let X be a subspace of L∗ and assume that X is closed in (L∗, | · |).
If F is a finite-dimensional subspace of L∗, then X + F is closed in (L∗, | · |). In
particular, every finite-dimensional subspace of L∗ is closed in (L∗, | · |).

Proof. By using induction on n = dimF , we can easily deduce from Lemma 6 that
X+F is closed in (L∗, | · |). Since {0} is closed in (L∗, | · |), every finite-dimensional
subspace of L∗ is closed in (L∗, | · |). �
Lemma 8. (1) If X and Y are non-empty subsets of L∗ then [X∗, Y ∗] ⊆ [X,Y ]∗.

(2) Let n < ω and let ∆ denote any one of the relations ≤,≤n and ▹n. If H∆L
then H∗∆L∗.

Proof. (1) Let x∗ ∈ X∗ and y∗ ∈ Y ∗. Then there exists a convergent sequence
{xn}n�1 (resp. {yn}n�1 ) in (L∗, | · |) with limit x∗ (resp. y∗ ) such that xn ∈ X

(resp. yn ∈ Y ) for all n � 1. Then by Lemma 2 we have [x∗, y∗] = limn→∞[xn, yn] ∈
[X,Y ]∗.

(2) If ∆ denotes ≤ then the result is immediately deduced from (1). Let n < ω
and let ∆ denote ≤n (resp. ▹n). Assume that H∆L. Then there exists a weak
series (resp. a series) (Hi)i�n from H to L. Using (1) we can show that (H∗

i )i�n

is a weak series (resp. a series) from H∗ to L∗. It follows that H∗∆L∗. �
Let H ≤ L. By Lemma 8 (2) we have H∗ ≤ L∗. Moreover, it is clear that

(H∗)∗ = H∗. Thus we obtain the following

Proposition 9. If H ≤ L then (H∗, | · |) is the completion of the valued Lie algebra
(H, | · |).

Let F be a free Lie algebra over k on a countably infinite set {t1, t2, . . . } and Ω
a set of words of F . Then the variety corresponding to Ω is denoted by VΩ (cf. [1,
p. 275]).

Finally we present the second main result of this section in the following

Theorem 10. Let n < ω and let ∆ denote any one of the relations ≤,≤n and ▹n.
Assume that H∆L.

(1) If H ∈ VΩ then H∗ ∈ VΩ and H∗∆L∗.
(2) Let X denote any one of the classes F, eA and N. If H ∈ X then H∗ ∈ X

and H∗∆L∗.

Proof. It is immediately deduced from Lemma 8 that H∗∆L∗.
(1) Let w ∈ Ω. We may suppose that the word w is in variables t1, . . . , tr, that

is, w = w(t1, . . . , tr). Assume that H ∈ VΩ and let x∗
i ∈ H∗ (1 � i � r). For each

i there exists a convergent sequence {xi,n}n�1 in (L∗, | · |) with limit x∗
i such that

xi,n ∈ H for all n � 1. Then by Lemma 2 we have

w(x∗
1, . . . , x

∗
r) = lim

n→∞
w(x1,n, . . . , xr,n) = 0.

It follows that H∗ ∈ VΩ.
(2) Assume that H ∈ X. If X denotes F then by Proposition 7 we have H∗ =

H ∈ F. Let X denote eA (resp. N). Then we can find an integer n � 1 such that
H ∈ An (resp. Nn). Since An (resp. Nn) is a variety corresponding to some single
word of F , by (1) we have H∗ ∈ An (resp. Nn). Thus we obtain H∗ ∈ X. �
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4. VALUATIONS OF GENERALIZED WITT ALGEBRAS

In this section we confine our attention to valuations of generalized Witt algebras
over a field k of characteristic zero.

Let G be a non-trivial subgroup of the additive group k ∩ R and let WG denote
a Lie algebra over k with basis {wg : g ∈ G} and multiplication

[wg, wh] = (g − h)wg+h (g, h ∈ G).

These Lie algebras WG are usually called generalized Witt algebras (cf. [1, p. 206]).
Let 0 ̸= x ∈ WG. There exists a non-empty subset J(x) of G such that x =∑
g∈J(x) λgwg and λg ∈ k× (g ∈ J(x)). Regard G as a linearly ordered set with

respect to the linear ordering < on R. As in [1, p. 207] we define

max(x) = max{g : g ∈ J(x)} and min(x) = min{g : g ∈ J(x)}.
For convenience’ sake, we also define

max(0) = −∞ and min(0) = +∞.

It is not hard to verify that the function max(x) (resp. min(x) ) defined in WG

satisfies the following conditions (1) — (3) (resp. (1’) — (3’)), where x, y ∈ WG

and α ∈ k× :
(1) max(αx) = max(x)
(resp. (1’) min(αx) = min(x)).
(2) max(x+ y) � max{max(x),max(y)}
(resp. (2’) min(x+ y) � min{min(x),min(y)}).
(3) max([x, y]) � max(x) + max(y)
(resp. (3’) min([x, y]) � min(x) + min(y)).

Hence we can define a non-trivial valuation | · | (resp. | · |′ ) of WG by

|x| = 2max(x) (x ∈ WG) (resp. |x|′ = (1/2)min(x) (x ∈ WG)).

Remark. Let c be a real number > 1. Then we can also define a non-trivial
valuation | · |1 (resp. | · |′1 ) of WG by

|x|1 = cmax(x) (x ∈ WG) (resp. |x|′1 = (1/c)min(x) (x ∈ WG)).

It is easy to see that the topology of (WG, | · |1) (resp. (WG, | · |′1) ) coincides with
the topology of (WG, | · |) (resp. (WG, | · |′) ).

Now we prove that the valued Lie algebra (WG, | · |) is isomorphic to the valued
Lie algebra (WG, | · |′). Let θ be a linear endomorphism of WG defined by θ(wg) =
−w−g (g ∈ G). Then it is clear that θ is a Lie endomorphism of WG. Since
θ ◦ θ =id, θ is a Lie automorphism of WG. Let 0 ̸= x ∈ WG. Obviously we have
J(θ(x)) = {−g : g ∈ J(x)}. It follows that min(θ(x)) = −max(x). Since

|θ(x)|′ = (1/2)min(θ(x)) = 2max(x) = |x|,
θ is an isomorphism from (WG, | · |) to (WG, | · |′). Consequently we may treat these
two valued Lie algebras (WG, | · |) and (WG, | · |′) without discrimination. So we
consider the valuation | · | of WG only.

Let (W ∗
G, | · |) be the completion of the valued Lie algebra (WG, | · |). We begin

with the following

Proposition 11. The valued Lie algebra (WG, | · |) is not complete, that is, WG ̸=
W ∗

G.
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Proof. Assume that (WG, | · |) is complete. Since G is a non-trivial subgroup of
the additive group k ∩ R, there exists an element g of G such that g > 0 and
(Z ∼=)Zg ≤ G. For each integer n � 1 we put

xn = w−ng + · · ·+ w−g + w0 ∈ WG.

If m > n � 1 then max(xm−xn) = −(n+1)g. Hence {xn}n�1 is a Cauchy sequence

in (WG, |·|). Then there exists an element x of WG such that limn→∞ xn = x. Since
|xn| = 1 for all n � 1, we have x ̸= 0. Let x =

∑
h∈J(x) λhwh and λh ∈ k× (h ∈

J(x)). Then we can find an integer N � 1 such that −ng < min(x) for all n � N .
Therefore we have max(xn − x) � −Ng. It follows that |xn − x| � 2−Ng for all
n � N . Thus we obtain limn→∞ |xn − x| ̸= 0. This is a contradiction. �

Furthermore, we restrict our attention to the case G = Z. Then we have the
following theorem which is the main result of this section.

Theorem 12. If 0 ̸= H wsi WZ then H is a dense subset of the metric space
(W ∗

Z , | · |).

Proof. Assume that 0 ̸= H ≤n WZ for some integer n � 1. Then we can find a non-
zero element x =

∑
g<N λgwg + wN ∈ H, where N = max(x) and λg ∈ k (g < N).

Put −m = min{(n + 1)N, 0} − 2. Then −m � −2. Let k be an integer � −m
and put l = k − nN . Then it is easy to see that k < min{(n+ 1)N, 0}. Therefore
l + (j − 1)N ̸= 0 (j = 0, 1, . . . , n+ 1). Thus we have

[wl, nx] =
∑
g<k

λ′
gwg + (l −N)l · · · {l − (n− 2)N}wk ∈ H,

where λ′
g ∈ k (g < k) and (l − N)l · · · {l − (n − 2)N} ̸= 0. Hence there exists a

non-zero element xk =
∑

g<k λk,gwg + wk ∈ H such that λk,g ∈ k (g < k).

Now we recursively define the terms of a sequence {yi}i�1 such that yi ∈ H and

max(yi − w−m) � −(m + i) for each i � 1. First define y1 = x−m ∈ H. Hence
y1 − w−m =

∑
g<−m λ−m,gwg. It follows that max(y1 − w−m) � −(m + 1). Let

i � 1 and suppose that the terms yj (j = 1, . . . , i) have been defined. There exist
µg ∈ k (g � −(m+ i)) such that yi − w−m =

∑
g<−(m+i) µgwg + µ−(m+i)w−(m+i).

Next define yi+1 = yi − µ−(m+i)x−(m+i) ∈ H. Then

yi+1 − w−m = yi − w−m − µ−(m+i)




∑
g<−(m+i)

λ−(m+i),gwg + w−(m+i)




=
∑

g<−(m+i)

(µg − µ−(m+i)λ−(m+i),g)wg

and hence max(yi+1−w−m) � −(m+i+1). Thus we can construct such a sequence
{yi}i�1. Then

|yi − w−m| � 2−(m+i) (i = 1, 2, . . . ).

Therefore we have w−m = limi→∞ yi ∈ H∗. It follows from Lemma 8 (2) that
H∗ ≤n W ∗

Z . Hence [z, nw−m] ∈ H∗ for all z ∈ WZ.
Let p be an integer ̸= −im (i = 2, 3, . . . , n+ 1). Put q = p+ nm. Then

[wq, nw−m] = (q +m)q(q −m) · · · {q − (n− 2)m}wp ∈ H∗
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and (q+m)q(q−m) · · · {q−(n−2)m} ̸= 0. Hence we have wp ∈ H∗. Since−m � −2,
we have wp ∈ H∗ (p = −3,−2, . . . ). It follows that WZ = ⟨w−2, w−1, w1, w2⟩ ≤ H∗.
Thus we obtain H∗ = W ∗

Z . �

Corollary 13. If H wsi WZ and H ∈ F ∪ eA then H = 0.

Proof. [2, Corollary (c)] asserts that every soluble subalgebra of WZ is of dimension
� 2. Hence we may suppose that H wsi WZ and H ∈ F. Owing to Proposition 7, we
have H∗ = H ∈ F. Assume that H ̸= 0. Using Theorem 12, we have W ∗

Z = H∗ ∈ F,
a contradiction. �

Finally we construct an example showing that if we replace ‘H wsi WZ’ by
‘H ≤ω WZ’ in the statement of Theorem 12 then it becomes a failure.

Example 14. Put H =
∑

g�1⟨wg⟩. Then H is an infinite-dimensional subalgebra

of WZ. Moreover, put H0 = H,Hn =
∑

g�1−n⟨wg⟩ (1 � n < ω) and Hω = WZ.

Then it is clear that (Hn)n�ω is a weakly ascending series from H to L, that is,

H ≤ω WZ. On the other hand, we can easily show that |x| = 2max(x) � 2 for all
x ∈ H\{0}. Thus we obtain H∗ = H ̸= W ∗

Z .

5. GENERALIZED WITT ALGEBRAS OF TYPE ±∞

In this section we construct new Lie algebras W−∞ and W+∞ which contain the
generalized Witt algebra WZ over a field k of characteristic zero.

Let {wr : r ∈ Z} be a basis for generalized Witt algebra WZ and ⟨wr⟩ = kwr

1-dimensional vector spaces (r ∈ Z). We consider the Cartesian sum Crr∈Z⟨wr⟩ of
⟨wr⟩ (r ∈ Z). Then we make Crr∈Z⟨wr⟩ into a vector space by defining an addition
and a scalar multiplication pointwise.

Now we set a subspace W−∞ (resp. W+∞) of Crr∈Z⟨wr⟩ as follows:

W−∞ =



∑
r�n

λrwr : n ∈ Z, λr ∈ k (r � n)





resp. W+∞ =



∑
r�n

λrwr : n ∈ Z, λr ∈ k (r � n)





 .

Moreover we can define a bracket product in W−∞ (resp. W+∞) as follows: For x =∑
r�n λrwr, y =

∑
s�m µsws ∈ W−∞ (resp. x =

∑
r�n λrwr, y =

∑
s�m µsws ∈

W+∞),

[x, y] =
∑

t�n+m

( ∑
r+s=t

λrµs(r − s)

)
wt


resp. [x, y] =

∑
t�n+m

( ∑
r+s=t

λrµs(r − s)

)
wt


 .

It is not hard to formulate that W−∞ and W+∞ are Lie algebras containning WZ
as a subalgebra. We call W−∞ (resp. W+∞) the generalized Witt algebra of type
−∞ (resp. +∞).

2 TAKANORI SAKAMOTO AND MASANOBU HONDA

In Section 5 we shall construct a new Lie algebras W−∞ containing the general-
ized Witt algebra WZ over a field k of characteristic zero, and prove that (W−∞, | · |)
is complete and WZ is a dense subset of the metric space (W−∞, | · |) (Theorem 15).

1. Notation and terminology

Throughout the paper we are always concerned with Lie algebras which are not
necessarily finite-dimensional over an arbitrary field k unless otherwise specified.
Notation and terminology is mainly based on [1]. In this section we explain some
symbols and terms which we use here.

The symbol Z (resp. R) denotes the ring of integers (resp. the field of real
numbers). For a field k, the symbol k× denotes the set of all non-zero elements of
k, that is, k× means the multiplicative group of k.

Let L be a Lie algebra over k and n a non-negative integer. The symbol H ≤ L
(resp.H ▹ L) denotes thatH is a subalgebra (resp. an ideal) of L. Angular brackets
⟨ ⟩ denotes the subalgebra generated by their contents. In [3] a subalgebra H of L
is said to be an n-step weak subideal of L, which is denoted by H ≤n L, provided
there exists an ascending chain (Hi)i�n of subspaces of L such that

(a) H0 = H and Hn = L,
(b) [Hi+1, H] ⊆ Hi (0 � i < n).

Then the chain (Hi)i�n is said to be a weak series from H to L. In particular,

(Hi)i�n is a series from H to L and H is an n-step subideal of L, denoted by

H ▹n L, provided Hi ▹ Hi+1 ≤ L (0 � i < n). H is said to be a weak subideal
(resp. a subideal) of L, denoted by H wsi L (resp. H si L), if H ≤n L (resp.
H ▹n L) for some integer n � 1. Let ω be the least limit ordinal. Furthermore, in
[3] a subalgebra H of L is said to be an ω-step weakly ascendant subalgebra of L,
which is denoted by H ≤ω L, provided there exists an ascending chain (Hi)i�ω of

subspaces of L such that
(a) H0 = H and Hω = L,
(b) [Hi+1, H] ⊆ Hi (0 � i < ω),
(c) Hω = ∪i<ωHi.
A class X is a collection of Lie algebras together with their isomorphic copies

and 0-dimensional Lie algebras. The symbol F (resp. An, eA,Nn,N) denotes the
class of Lie algebras which are finite-dimensional (resp. soluble of derived length
� n, soluble, nilpotent of class � n, nilpotent).

2. VALUED LIE ALGEBRAS AND THEIR COMPLETIONS

In this section we shall introduce the concept of valued Lie algebras and their
completions.

Let L be a Lie algebra over k. We say that a mapping x �→ |x| from L to R is a
(non-Archimedian) valuation of L if the mapping satisfies the following conditions
(i) – (iv), where x, y ∈ L and α ∈ k×:

(i) |x| > 0 except that |0| = 0.
(ii) |αx| = |x|.
(iii) |x+ y| � max{|x|, |y|}.
(iv) |[x, y]| � |x||y|.

Then we simply denote by | · | the mapping x �→ |x| and say that the pair (L, | · |)
is a valued Lie algebra.
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Let 0 ̸= x ∈ W−∞ (resp. W+∞) and x =
∑

r�n λrwr (resp.
∑

r�n λrwr) (λn ̸=
0). Then, as in §4, we define

max(x) = n (resp.min(x) = n) and max(0) = −∞ (resp.min(0) = +∞).

It is easy to show that the function max(x) (resp. min(x) ) satisfies the conditions
(1) — (3) (resp. (1’) — (3’)) in §4. Hence we can also define a non-trivial valuation
| · | (resp. | · |′ ) of W−∞ (resp. W+∞) by

|x| = 2max(x) (x ∈ W−∞) (resp. |x|′ = (1/2)min(x) (x ∈ W+∞)).

Now we prove that the valued Lie algebra (W−∞, | · |) is isomorphic to the valued
Lie algebra (W+∞, | · |′). Let θ be a linear mapping from W−∞ to W+∞ defined by

θ(
∑
r�n

λrwr) =
∑
r�n

(−λr)w−r.

Similarly, let θ′ be a linear mapping from W+∞ to W−∞ defined by

θ′(
∑
r�n

λrwr) =
∑
r�n

(−λr)w−r.

Then it is clear that θ (resp. θ′) is a Lie homomorphism from W−∞ to W+∞
(resp. from W+∞ to W−∞). Since θ ◦ θ′ =idW+∞ and θ′ ◦ θ =idW−∞ , θ becomes
a Lie isomorphism. Let 0 ̸= x ∈ W−∞ and x =

∑
r�n λrwr (λn ̸= 0). As θ(x) =∑

r�n(−λr)w−r, we have

|θ(x)|′ = (1/2)min(θ(x)) = (1/2)−n = 2n = 2max(x) = |x|.
Therefore θ is an isomorphism from (W−∞, | · |) to (W+∞, | · |′). Furthermore, we
can easily see that θ(WZ) = WZ and θ′(WZ) = WZ.

Next we give an important property of the valued Lie algebra (W−∞, | · |), which
is a main result in this section.

Theorem 15. (W−∞, | · |) is complete and WZ is a dense subset of the metric space
(W−∞, | · |).

Proof. Let {xn}n�1 be a Cauchy sequence in (W−∞, | · |). If there is an infinite

number of positive integers n such that xn = 0, then we can find a subsequence
{xn(k)}k�1 of {xn}n�1 such that xn(k) = 0 for all k � 1. Hence we get limn→∞ xn =

0. Otherwise we may assume that there is a finite number of n with xn = 0. Thus
we suppose that xn ̸= 0 for all n � 1. Set max(xn) = l(n) (n � 1) and let the
expression of xn be

xn =
∑

i�l(n)

λn,iwi (λn,i ∈ k (i � l(n)), λn,l(n) ̸= 0).

For any k � 1 there exixts an ascending natural number N(k) such that |xm−xn| <
2−k for all m,n � N(k). That is to say, max(xm − xn) < −k for all m,n � N(k).
Since

xm − xn =
∑

i�max{l(m), l(n)}

(λm,i − λn,i)wi,

the condition max(xm − xn) < −k for all m,n � N(k) means either

(i) l(m) < −k and l(n) < −k for all m,n � N(k), or
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(Hi)i�n is a series from H to L and H is an n-step subideal of L, denoted by

H ▹n L, provided Hi ▹ Hi+1 ≤ L (0 � i < n). H is said to be a weak subideal
(resp. a subideal) of L, denoted by H wsi L (resp. H si L), if H ≤n L (resp.
H ▹n L) for some integer n � 1. Let ω be the least limit ordinal. Furthermore, in
[3] a subalgebra H of L is said to be an ω-step weakly ascendant subalgebra of L,
which is denoted by H ≤ω L, provided there exists an ascending chain (Hi)i�ω of

subspaces of L such that
(a) H0 = H and Hω = L,
(b) [Hi+1, H] ⊆ Hi (0 � i < ω),
(c) Hω = ∪i<ωHi.
A class X is a collection of Lie algebras together with their isomorphic copies

and 0-dimensional Lie algebras. The symbol F (resp. An, eA,Nn,N) denotes the
class of Lie algebras which are finite-dimensional (resp. soluble of derived length
� n, soluble, nilpotent of class � n, nilpotent).

2. VALUED LIE ALGEBRAS AND THEIR COMPLETIONS

In this section we shall introduce the concept of valued Lie algebras and their
completions.

Let L be a Lie algebra over k. We say that a mapping x �→ |x| from L to R is a
(non-Archimedian) valuation of L if the mapping satisfies the following conditions
(i) – (iv), where x, y ∈ L and α ∈ k×:

(i) |x| > 0 except that |0| = 0.
(ii) |αx| = |x|.
(iii) |x+ y| � max{|x|, |y|}.
(iv) |[x, y]| � |x||y|.

Then we simply denote by | · | the mapping x �→ |x| and say that the pair (L, | · |)
is a valued Lie algebra.
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(ii) l(m) = l(n) � −k and λm,i = λn,i (i = −k,−(k − 1), . . . , l(m) = l(n)) for
all m,n � N(k).

If the condition (i) holds for all k ∈ N, then for all n � N(k)

|xn| = 2max(xn) = 2l(n) < 2−k → 0 (k → ∞).
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{xn}n�N(k) with {xn}n�1. Therefore we may suppose that

l(m) = l(n) for all m,n � 1.

Putting l = l(m) we get

xm − xn =
∑
i�l

(λm,i − λn,i)wi for all m,n � 1.
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λN(k),−k = λN(k)+1,−k = · · · = λn,−k, say λ−k, for all n � N(k).

Here we set x∗ =
∑

i�l λiwi ∈ W−∞.
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· · · · · ·
λN(1),l = λN(1)+1,l = · · · = λn,l, say λl, for all n � N(1).
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∑

i�l λiwi ∈ W−∞.

Let k ∈ N. Then for any n � N(k) we have

xn − x∗ =
∑
i�l

(λn,i − λi)wi =
∑

i�−(k+1)

(λn,i − λi)wi.

Hence we obtain max(xn − x∗) � −(k + 1) < −k. Thus

|xn − x∗| = 2max(xn−x∗) < 2−k → 0 (k → ∞).

That is to say, limn→∞ xn = x∗ ∈ W−∞. Therefore we conclude that (W−∞, | · |)
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2 TAKANORI SAKAMOTO AND MASANOBU HONDA
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Throughout the paper we are always concerned with Lie algebras which are not
necessarily finite-dimensional over an arbitrary field k unless otherwise specified.
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there exists an ascending chain (Hi)i�n of subspaces of L such that

(a) H0 = H and Hn = L,
(b) [Hi+1, H] ⊆ Hi (0 � i < n).

Then the chain (Hi)i�n is said to be a weak series from H to L. In particular,

(Hi)i�n is a series from H to L and H is an n-step subideal of L, denoted by

H ▹n L, provided Hi ▹ Hi+1 ≤ L (0 � i < n). H is said to be a weak subideal
(resp. a subideal) of L, denoted by H wsi L (resp. H si L), if H ≤n L (resp.
H ▹n L) for some integer n � 1. Let ω be the least limit ordinal. Furthermore, in
[3] a subalgebra H of L is said to be an ω-step weakly ascendant subalgebra of L,
which is denoted by H ≤ω L, provided there exists an ascending chain (Hi)i�ω of

subspaces of L such that
(a) H0 = H and Hω = L,
(b) [Hi+1, H] ⊆ Hi (0 � i < ω),
(c) Hω = ∪i<ωHi.
A class X is a collection of Lie algebras together with their isomorphic copies

and 0-dimensional Lie algebras. The symbol F (resp. An, eA,Nn,N) denotes the
class of Lie algebras which are finite-dimensional (resp. soluble of derived length
� n, soluble, nilpotent of class � n, nilpotent).

2. VALUED LIE ALGEBRAS AND THEIR COMPLETIONS

In this section we shall introduce the concept of valued Lie algebras and their
completions.

Let L be a Lie algebra over k. We say that a mapping x �→ |x| from L to R is a
(non-Archimedian) valuation of L if the mapping satisfies the following conditions
(i) – (iv), where x, y ∈ L and α ∈ k×:

(i) |x| > 0 except that |0| = 0.
(ii) |αx| = |x|.
(iii) |x+ y| � max{|x|, |y|}.
(iv) |[x, y]| � |x||y|.

Then we simply denote by | · | the mapping x �→ |x| and say that the pair (L, | · |)
is a valued Lie algebra.
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Finally we must claim that WZ is a dense subset of (W−∞, | · |). Let x =∑
r�n λrwr (λn ̸= 0) be any non-zero element of W−∞. For any integer m � 1 we

define

xm =

m∑
i=0

λn−iwn−i ∈ WZ.

Given any ε > 0, there is an integer N > 0 with 2−N < ε. Then for all m > N + |n|
we have

|xm − x| =

������
∑

r�n−m−1

(−λr)wr

������
< 2−(m−n) < 2−N < ε.

Therefore it follows that limm→∞ xm = x. �
Accordingly we get the following corollary to this theorem.

Corollary 16. (W−∞, | · |) is the completion of (WZ, | · |).

Remark. Since (W−∞, | · |) is isomorphic to (W+∞, | · |′), (W+∞, | · |′) is also the
completion of (WZ, | · |′).
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