福岡教育大学紀要, 第69号, 第3分冊, 1-7 (2020)

ダイナミックスピーカを用いた音速測定

Sound velocity measurement using a dynamic speaker

永 吉 将 人字 藤 茂 憲Masato NAGAYOSHIShigenori UTOH

福岡市立城南中学校

福岡教育大学教育学部理科教育ユニット

Fukuoka City Jonan Junior High School

Science Education Course, Department of Education, University of Teacher Education Fukuoka

(令和元年9月30日受付,令和元年12月12日受理)

キーワード:音速測定,時間差測定,共鳴,気柱共鳴,関数発生器,パソコンオシロスコープ

空気中を伝わる音の速さを、中・高等学校および大学での基礎物理学実験でおこなわれている計測に工夫 を加えて、如何に正確かつ精度良くおこなうかの実施例を示す。デジタル技術やデータ解析でパーソナルコ ンピュータ(以下、PC)を活用した物理学実験の提示である。

1. はじめに

共鳴現象で音速測定をおこなう汎用実験として,高等学校や大学の基礎物理学実験で実施している気柱共 鳴^{1~4)} やクントの実験などがあげられる。また,音が一定距離を進行するに要する時間の計測^{5~8)} で音速 をもとめる実験も種々おこなわれている。本報告では,これらの実験条件やデータ解析を改良し,簡便かつ 正確で精度の良い音速測定が可能な実験を提示する。中学校や高等学校が所有する比較的廉価な実験器具お よび PC を活用し,最近のデジタル技術を用いた測定である。

2. 実験方法

アクリル(透明) 製円筒(長さ 1.035 m,内径 56 mm,外形 60 mm:以下,円筒)の一端にダイナミックスピーカ(イーケイジャパン AP-203,801W で 57 ϕ mm:以下,DS)をポリ塩化ビニルテープで密着させて,開口端の円筒として音速測定に用いた(写真 1)。連続音源には、フリーソフトの Wave Gene(以下,

写真1 開口端円筒を用いた音速測定

①の PC 発振器からの信号は、PC のヘッドホーン端子から②の PW アンプ(写真では円筒で隠れている)を経て、③円筒左側に密着した DS で音を発生させる。円筒内を伝搬する音は、④木製棒先端の小型 DS で音を電気信号に変換し、⑤ PW アンプで信号を増幅して、⑥ PC オシロを経て、⑦右側の PC で解析する。右上の四角内の写真は、 12ϕ mm 棒の先端に 20ϕ mm の音受信用 DS を取り付けた④を拡大した。左上の四角内の写真は、PW アンプ②と⑤を拡大した。 Δt 測定法は、⑥の PC オシロの chl と ch2 で測定した。共鳴法は、PC オシロの ch2 のみで測定した。

PC 発振器)を用いた。このソフトは任意の可聴域振 動数(最小単位は10Hz)と強度(dB)調整が可能で ある。PC 発振器で生じたサイン波の連続信号を PC のヘッドホーン端子経由でパワーアンプ [Elekit 製 PS3238 (0.95 W):以下, PW アンプ] で増幅した後, 円筒に密着させた DS に接続した。パルス音は、PC 関数発生器(ELMOS 製 AWG50:12 ビット分解能ア ナログ出力1チャンネル)付属のソフトで1波長のサ イン波(例, 910 Hzの場合, 1 周期 =1.099 ms, 繰り 返し発信周期5s,出力0.9V)を作成し,PCのUSB 端子から関数発生器本体に送信した。このパルス信号 を PW アンプ経由で円筒に密着した DS に接続し、5 秒間隔でパルス音を発生させた。測定で用いるのは, 最初の1パルスである。円筒に固定した DS に入力 直前の連続信号を, 或いはパルス信号を PC オシロス コープ [P&A 製 PS-A2000 (DC ~ 200 MHz) 以下, PC オシロ]の ch1 で測定した [図 1(a) (b)の i と iii]。

音の受信には、直径 20 mm の DS (ノーブランド 品 8 Ω 1W)を用いた。12 ϕ mm の木製棒先端にこの 小型 DS を取り付けて(写真1の右上)、円筒の開口 端から挿入できるようにした。小型 DS に到達した音 を DS で電気信号に変換し、PW アンプで増幅後の信 号 [図 1(*a*) (b)の ii と iv]を PC オシロ ch2 で測定し た。距離の測定は、音発生 DS のエッジ (DS コーン の縁)から小型 DS のエッジまでの長さを複数回計測 して平均した。

音速測定は、次の2通りでおこなった。

- 円筒内の一定距離を通過する時間を計測する音速 測定(*At* 測定法)。
- (2) 円筒内に共鳴状態を形成して「節」と「腹」の位 置を検出する音速測定(共鳴法)。

円筒や DS の幾何学的な条件で実際に生じている 開口端円筒の共鳴⁹ において,小型 DS で受信する

強度が最大になる振動数を PC オシロ ch2 で確認しながら(1)と (2)の測定に用いる連続音源の振動数やサイン形状パルスを決め た。ここで,円筒開口端からできるだけ近いポイントに小型 DS を 設置[例,円筒に密着させた DS から小型 DS までの距離 0.885 m (20.0℃)]したとき,強度が最高になる 910 Hz の振動数(周期: 1.099 ms)の音で測定した。実験に使用する振動数を決めるこのプ

図1(*a*) 連続サイン波でトリガ測定した PC オシロ画 面。先行する赤色サイン波(ch1のi)は、音発生用 DS へ入力する前の PC 発振器からの信号をアンプで増幅し た。後続の青色サイン波(ch2のii)は、音を受けた DS の信号をアンプで増幅した。

図1(b) サイン形状パルスでトリガ測定した PC オシロ 画面。先行する赤色波(ch1のiii)は、音発生用 DS へ 入力する前の PC 関数発生器からの信号をアンプで増幅 した。後続の青色サイン波(ch2のiv)は、音を受けた DS の信号をアンプで増幅した。

表1 PC オシロパネル操作画面の設定値

波形	信号種類	Volt/div	Time/div		
10° 11.77	ch1	2 V	1 ma		
11/2	ch2	200 mV	1 ms		
,半个年小中	ch1	2V	1		
理就放	ch2	500mV	1 ms		

ロセスは, PC オシロ画面でゼロクロス [音の信号が縦軸の0V を通過するときの横軸(時間)の値]を検 出するときの精度に関わる。^{脚注1}

PC オシロの ch1 で DS に入力直前(PW アンプで増幅直後)の信号を, ch2 では小型 DS で音を電気信号 に変換して PW アンプで増幅した信号を測定する。室温に依存するが, 音は 1 m 程度の距離を約 2.9 ms で 通過するため, PC オシロのトリガ機能で計測した。ch1 の立ち上がり信号の最大値[V]の約 3 割の電圧 値でトリガを設定し, ch1 と ch2 を同一画面に表示した。表 1 に PC オシロの設定値の 1 例を示す。PC 発

脚注1:使用した円筒やDSの幾何学的な条件に合致した共鳴振動数で音を発生させることで、受信強度を増大させ、 かつ雑音の発生を抑えた SN 比(信号対雑音比)の良いデータを得ることが可能となる。つまり、ゼロクロスで の読取り精度が上がり、精度の良い At 計測ができる。

振器・関数発生器・PW アンプの各強度を調整して,信号に比べて雑音の極めて低い状態で測定した。PC オシロは配電盤のアースと接続して雑音の低下に努めた。

2-1. *∆t* 測定法

円筒に密着した DS から音を受信する小 型 DS までの距離を計 測し,両者間距離を通 過する時間 *∆t* を計測 して音速をもとめる基 本的な方法である。連 続音源による測定は 図 3-1, サイン形状 パルス音源の測定は 図 3-2 に示す。PC オ シロの計測画面を図2 に示す。実験に用いた PC オシロの時間は画 面右側から左側に進行 するため、連続(或い は、サイン形状パルス) 音源測定では DS に入 力する直前の信号が図 1(a) のi [或いは, 図 1(b)のiii]. 小型 DS で

図2 PC オシロ画面の時間差測定 先行サイン波は、音発生用 DS へ 入力する前の PC 発振器からの信号 をアンプで増幅した。後続サイン 波は、受信用 DS の信号がアンプを 経由したものである。*Δt*₁, *Δt*₂, *Δt*₃ は、発振器からの信号の最初のサ イン波の第1番目、第2番目、第3 番目のゼロクロスから一定距離を 進んで DS で受信した音のこれらに 対応する各ゼロクロスまでの時間 差を示す。

音受信して PW アンプで増幅した信号が図 1(*a*)のii [或い は,図 1(b)のiv] である。 Δt_1 , Δt_2 , Δt_3 を測定した各平均 値を用いて,或いはすべての値の平均値から通過時間をも とめて音速を算出した。ここで,連続音源は 910 Hz とし た。サイン形状パルス音源は 910 Hz (振動数)相当とし た [20.0℃の場合,波長: λ =(331.5+0.6×20.0)/910[m]]。

2-2. 共鳴法

円筒の開口端から円筒内に小型 DS を挿入して,共鳴の "腹"と"節"の位置を,PC オシロで小型 DS からの信号 (強度の極小値の位置が"腹"で極大値が"節")をみな がら,また聴覚でも確認しながら検出した(図3-3)。小 型 DS を円筒に密着させた DS に近づけながら測定,また 遠ざけながら測定することを1組の測定として,数回繰り 返した。ここで,本測定条件に適した音源は PC オシロ画 面でモニタする強度が,例えば,開口端近くの「節」の位 置で最も強くなる振動数を選択して,910 Hz とした。先 端に 20 φ mmDS の付いた棒を円筒内に挿入するので,厳 密には計測するたびに円筒内の共鳴状態が変化して同一条 件でなくなる。小型 DS を挿入する長さに依存する異なっ た共鳴条件で計測することになる。このため,高等学校や 大学の基礎物理実験で実施している気柱共鳴実験(島津理 化製気柱共鳴管 25 φ mm × 80 cm:写真 2 と図 4)をおこ

図 3-1 連続音源を用いた「開口端円筒の *dt* 法」 ① PC オシロ画面(WaveGenePC 発振器の操作: 信号は PC のヘッドホーン端子から出力), ② PW アンプ, ③ DS, ④小型 DS, ⑤ PC オシロ本体 (PC と USB 接続), ⑥ PC オシロ画面(PC オシ ロの操作: ch1 と ch2 を使用)

図 3-2 サイン形状パルスを用いた「開口端円筒 の *dt* 法 |

PCオシロ画面(PC 関数発生器の操作),②
 PC 関数発生器本体(PCと USB 接続),③ PW
 アンプ、④ DS、⑤小型 DS、⑥ PC オシロ本体(PCと USB 接続),⑦ PC オシロ画面(PC オシロの操作: ch1と ch2 を使用)

図 3-3 開口端円筒の共鳴法

 PC オシロ画面(WaveGenePC 発振器の操作: 信号は PC のヘッドホーン端子から出力),②
 PW アンプ、③ DS、④小型 DS、⑤ PC オシロ本体(PC と USB 接続),⑥ PC オシロ画面(PC オシロの操作: ch2 のみを使用) なった。通常は音源に音叉(例, 340 Hz や 850 Hz) を用いるが, より正確に測定するため, DS からの連続音で実施した。¹⁾開 口端近くに設置したマイク(エ ルモス製 MS-STM88SV, PW アンプ付) で音を検出し, PC オシロで音の強度を視覚的に 確認(PCオシロ画面の強度変 化で極大値をモニタする)し ながら,気柱共鳴の節の位 置を検出した。^{脚注2}800 Hz. 1,200 Hz, 1,600 Hz, 2,000 Hz の複数の振動数で測定し、開 口端補正を用いないデータ解 析をおこなった。

3. 実験データと結果 3-1. *Δt* 測定法

表2(連続音源)と表3(サ イン形状パルス音源)にデータ と解析結果を示す。汎用表計算 ソフト(Microsoft Excel)で

写真2 気柱共鳴実験 ① PC 発振器と PC オシロを1 台 の PC (OS は Windows XP) で 操作, ② PC のヘッドホーン端 子 (音信号の PC からの出力)と マイク端子 (音信号の PC への 入力), ③ PW アンプ (1W), ④ DS, ⑤アンプ付マイク, ⑥気柱 共鳴管 (島津理科), ⑦水タンク 図4 連続波音源を用いた気柱共鳴実験 ① PC オシロ画面(「Genero」PC 発振器 と「振駆朗」PC オシロの操作), ② PW アンプ, ③ DS, ④気柱共鳴管, ⑤ 水タ ンク, ⑥ PW アンプ付マイク。Windows XP OS の PC を使用した。①の信号は PC のヘッドホーン端子から出力し, ⑥のア ンプ付マイクからの信号は PC のマイク 端子から取り込んだ。

データ解析した。 Δt_1 , Δt_2 , Δt_3 のそれぞれの平均値をもとめて, また, 全てのデータの平均値から各音速および確率誤差を算出した。室温(TC)から算出できる空気中の音速公式

V(T) = 331.5 + 0.6T [m/s]

と比較しての差を%で示している。

連続音源(910 Hz)で音速測定した場合,音発生 DS から音受信 DS までの平均距離 0.885 m を平均 2.59 ms 掛かったので,音速は 341.7 m/s となる。計算でもとめた値(20.0℃で 343.5 m/s)とは 0.5% の差

		↓ ms					↓ ms					↓ ms					↓ ms	
	データ No	Δt_1	V_1	%	1の残差	全体の残差	Δt_2	V_2	%	2の残差	全体の残差	Δt_3	V_3	%	3の残差	全体の残差	平均	%
1	No4	2.63	336.5	-2.04	6.78	27.6	2.58	343.0	-0.14	0.03	1.61	2.58	343.0	-0.14	0.11	1.61	2.597	-0.78
2	No5	2.59	341.7	-0.52	6.73	0.0	2.59	341.7	-0.52	1.35	0.00	2.57	344.4	0.25	1.00	6.78	2.583	-0.27
3	No6	2.57	344.4	0.25	27.59	6.8	2.58	343.0	-0.14	0.03	1.61	2.58	343.0	-0.14	0.11	1.61	2.577	-0.01
4	No7	2.63	336.5	-2.04	6.78	27.6	2.59	341.7	-0.52	1.35	0.00	2.58	343.0	-0.14	0.11	1.61	2.600	-0.91
5	No8	2.64	335.2	-2.41	15.04	42.6	2.58	343.0	-0.14	0.03	1.61	2.58	343.0	-0.14	0.11	1.61	2.600	-0.91
6	No9	2.60	340.4	-0.91	1.64	1.9	2.58	343.0	-0.14	0.03	1.61	2.58	343.0	-0.14	0.11	1.61	2.587	-0.40
7	No10	2.60	340.4	-0.91	1.64	1.9	2.57	344.4	0.25	2.25	6.78	2.57	344.4	0.25	1.00	6.78	2.580	-0.14
8	No11	2.62	337.8	-1.66	1.74	15.7	2.58	343.0	-0.14	0.03	1.61	2.58	343.0	-0.14	0.11	1.61	2.593	-0.65
	平均 →	2.61	339.11	-1.28			2.58	342.86	-0.19			2.58	343.36	-0.04			2.590	-0.51
	全体の平均	$\Delta t_{\mp ij}$	2.590	ms												DS問題解離	0.885	
	全体の平均	$V_{\mp \eta}$	341.75	m/s	-0.5	%									5		20.0	n r
															3	- (四) - (2)	20.0	<u>w/a</u>
Α	個別の計算														A	异日坯	040.0	III/S
	1の確率誤差		0.74		\rightarrow	$V = 339.1 \pm 0$.74								t.	\$ pt m	9 500	
	2の確率誤差		0.20		\rightarrow	$V = 342.9 \pm 0$.20								L.	加定	0.002500	e
	3の確率誤差		0.15		\rightarrow	$V = 343.4 \pm 0$.15								3	山中立市	241.7	5 m/a
В	全体の計算														ð	以此自述	541.7	шиз
	確率誤差		0.37		\rightarrow	$V = 341.7 \pm 0$.37									差	-0.5	%
																	0.0	//
															·			

表2 開口端円筒で音源に連続波を用いた At 測定でのデータ解析例。測定条件および結果を表右下の四角枠内に示した。

脚注2:気柱共鳴実験では、大学の基礎物理学実験でおこなっている器具を用いた。本学の学生実験では、1 台の PC で PC 発振器と PC オシロを操作するため、Windows XP OS のパソコンで実施している。PC 発振器には「Genero」 を、PC オシロ(1ch)には「振駆朗」を使用した。何れもフリーソフトである。前者は、PC のヘッドホーン 端子からの信号を PW アンプで増幅して DS に接続している。後者は、アンプ付マイクからの信号を PC マイ ク端子経由で PC に取り込んでいる。

		↓ ms					↓ ms					↓ ms					↓ ms	
データ No		Δt1	V_1	%	1の残差	全体の残差	$\Delta t2$	V_2	%	2の残差	全体の残差	Δt3	V_3	%	3の残差	全体の残差	平均	%
1	No4	2.63	339.9	-1.6	0.24	16.26	2.57	347.9	0.73	0.028	15.24	2.60	343.8	-0.43	0.000002	0.012	2.600	-0.4
2	No5	2.63	339.9	-1.6	0.24	16.26	2.57	347.9	0.73	0.028	15.24	2.60	343.8	-0.43	0.000002	0.012	2.600	-0.4
3	No6	2.62	341.2	-1.2	0.66	7.48	2.57	347.9	0.73	0.028	15.24	2.60	343.8	-0.43	0.000002	0.012	2.597	-0.3
4	No7	2.63	339.9	-1.6	0.24	16.26	2.57	347.9	0.73	0.028	15.24	2.60	343.8	-0.43	0.000002	0.012	2.600	-0.4
5	No8	2.63	339.9	-1.6	0.24	16.26	2.57	347.9	0.73	0.028	15.24	2.60	343.8	-0.43	0.000002	0.012	2.600	-0.4
6	No9	2.62	341.2	-1.2	0.66	7.48	2.57	347.9	0.73	0.028	15.24	2.59	345.2	-0.05	1.759124	1.482	2.593	-0.2
7	No10	2.63	339.9	-1.6	0.24	16.26	2.58	346.5	0.34	1.392	6.53	2.60	343.8	-0.43	0.000002	0.012	2.603	-0.6
8	No11	2.62	341.2	-1.2	0.66	7.48	2.57	347.9	0.73	0.028	15.24	2.61	342.5	-0.81	1.738943	2.038	2.600	-0.4
	平均 →	2.63	340.41	-1.42			2.57	347.69	0.68			2.60	343.85	-0.43			2.599	-0.40
															Г			
	全体の平均	$\Delta t_{\mp ij}$	2.599	ms										DS間距離		DS間距離	0.894	m
	全体に平均	$V_{\mp til}$	343.96	m/s	-0.4	%								0.893		家温	23.1	ĉ
														0.895		計算音速	345.33	m/s
A	個別の計算													0.895				
	1の確率誤差		0.16	1	\rightarrow	$V = 340.1 \pm 0.1$.16							0.895		時間差	2.599	ms
	 2の確率誤差 		0.11		\rightarrow	$V = 347.7 \pm 0.0$.11							0.894			0.002599	s
	3の確率誤差		0.17		\rightarrow	$V = 343.9 \pm 0.0$.17							0.894		測定音速	343.98	m/s
В	全体の計算													0.895				
	確率誤差		0.43]	\rightarrow	$V = 343.9 \pm 0.000$.43							0.8944	(m)	差	0.4	%

表3 開口端円筒でサイン形状パルスを用いた イt 測定法のデータ解析例。測定条件および結果を表右下四角枠内に示した。

となった。また,サイン形状パルスで音速測 定した場合は,音発生 DS から音受信 DS ま での平均距離 0.894 m を平均 2.59 ms 掛かっ たので,音速は 345.3 m/s となる。計算でも とめた値(23.1℃で 345.3 m/s)とは 0.4%の 差となった。連続音源の測定およびサイン形 状パルス音源の測定では計算値とは 1% 未満 の差で正確かつ精度の良い測定ができた。

3-2. 共鳴法

表4に開口端条件での共鳴法(図3-3) によるデータ解析の結果を示す。小型DSを 円筒内に挿入することで,共鳴における「節」 や「腹」を測定するたびに共鳴状態が乱され る(或いは,幾何学的な共鳴条件が異なる) ため,室温から算出して得た音速の値(20.5℃ で343.8 m/s)と比較して,1%台の差となっ た。

気柱共鳴実験(図4)によるデータ解析の 結果を表5に示す。PCオシロの音の強度変 化をモニタし,気柱内の「節」の位置のみ を計測して音速を算出した。DSから連続音 が出ているため,聴覚と視覚(PCオシロ画 面の強度の極大値)の両方で慎重に確認で きるので測定し易い。また,表5に示すよ うに開口端補正を必要としないデータ解析 をおこなった。何れの振動数でも,全体の 平均値でも算出して得た音速の値(24.5℃で 346.2 m/s)と約0.4%の差で正確にかつ精度 の良い測定ができた。

4. まとめ

本報告で示した音速測定の方法そのものは 高等学校および大学での定番の物理学実験で あるが,比較的廉価なデジタル測定器の活用 表4 開口端円筒を用いた共鳴法のデータ解析例の一部

910 Hz のサイン波で円筒内に共鳴を発生させ、共鳴音の強度 を PC オシロ画面で確認しながら測定する。測定データを 7 に、 データ換算を 4 に、共鳴の極大値「節」と極小値「腹」の位置 より波長をもとめる計算を 9 に示している。各平均波長に振動 数 (910 Hz)を掛けて音速をもとめた。表中左の赤色矢印は「節」 の位置からもとめた値を、右の赤色矢印は「腹」の位置からもと めた値を示す。表中赤色括弧は、「節」と「腹」からもとめた平 均値を示す。測定した全てのデータを使用して、表4の下図に示 すように解析した。「節」の位置のデータからは 1 を、また「腹」 の位置のデータからは 1.5 んをもとめることができる。

表5 気柱共鳴管を用いたデータ解析例

 (a) データ解析の例、(b) 2,000 Hz のデータ解析の数式
 本学の物理学実験で用いているワークシート。800 Hz, 1200 Hz, 1600 Hz と 2000 Hz のサイン波で気 柱共鳴を発生させ、共鳴音の強度を PC オシロで確認しながら測定する。例えば、2000 Hz (波長え。) で 共鳴する気柱の共鳴音強度の極大値(節)を示す位置は、島津理科製気柱共鳴管(長さ約 0.8 m)では 10ヶのデータを得る。表の 2000 Hz 場合の「J 列と K 列」を書直したものを(b)の「L 列と M 列(数式)」 に記載している。全データを用いた解析でえ、をもとめるため、表の M 列 12 行から 16 行の式に基づいて 処理した。え、の平均を(M, 18) セルでおこない、この値に振動数(2000)を掛けて音速を算出した。全 測定の平均値を(E, 23)に示す。

)	A	в	С	D	E	F	G	н	Ι	J	к
-	1										
4	2			室温	24.5	(°C)					
ŝ	3			音速度 (計算値)	346.2	(m/s)					
4	4										
Ş	ō		測定周波数〔Hz〕	800		1200	0	1600		200	0
6	6	番号	波長換算の長さ	測定値 〔cm〕	λ_1 (cm)	測定値 〔cm〕	$3\lambda_2/2$ (cm)	測定値〔cm〕	$2\lambda_{3}(\rm cm)$	測定値〔cm〕	5λ ₄ /2 (cm)
-	7	1	λ /4	9.3		5.8		3.9		2.8	
ę	3	2	3λ/4	30.8		20.2		14.7		11.5	
g	9	3	5λ/4	52.4	43.1	34.4		25.6		20.1	
1	0	4	7λ/4	73.5	42.7	48.8	43.0	35.9		28.6	
1	1	5	9λ/4			63.0	42.8	47.2	43.3	37.5	
1	2	6	$11 \lambda / 4$			77.0	42.6	57.9	43.2	46.2	43.4
1	3	7	13λ/4					68.8	43.2	54.9	43.4
1	4	8	$15 \lambda / 4$					79.2	43.3	63.6	43.5
1	5	9	$17\lambda/4$							72.3	43.7
1	6	10	19 λ /4							80.6	43.1
1	7		↑ D, F, H, J 列の								
1	8		各波長換算距離	λ_1 (cm)	42.90	λ_2 (cm)	28.5	λ_3 (cm)	21.6	λ_4 (cm)	17.4
1	9			音速[cm/s]	34320.0	音速[cm/s]	34240.0	音速[cm/s]	34600.0	音速[cm/s]	34736.0
2	:0			音速[m/s]	343.2	音速[m/s]	342.4	音速〔m/s〕	346.0	音速[m/s]	347.4
2	:1			計算値との差〔%〕	-0.9	計算値との差〔%〕	-1.1	計算値との差〔%〕	-0.1	計算値との差〔%〕	0.3
2	2										
2	3			平均速度	344.74	(m/s)					
2	4			差	-0.42	%					
2	:5										
10	0										

および測定法やデータ解析の工夫で、正確かつ精度の良い音速測定が可能となる。

開口端円筒の Δt 測定法では、一定距離を通過する Δt の測定精度を高めることが正確な音速を得るポイン トとなる。小型 DC の開口端円筒内への挿入位置を決めたうえで、このときの共鳴条件を満たす振動数 f_{exp} を実際に実験してもとめ、この f_{exp} を音源にした測定で Δt を計測する。トリガ機能で得た PC オシロ画面で、 信号のゼロクロスでのシャープな立ち上がり(或いはその逆)が正確な Δt の計測を可能とする [図 1(*a*)]。 1 m 程度の距離で Δt 計測を実施するには、「時間の読取精度」を向上させる必要がある。本測定では、廉価 な PC オシロのトリガ機能と開口端円柱の発生音の共鳴条件に基づいた振動数の特定^{脚注1}で、 Δt 法の正確か つ精度の良い測定を可能とした。

気柱共鳴は,強度の極大値を得る「節」の位置を PC オシロ画面で視覚的に確認しながら時間を掛けての 慎重な測定,また開口端補正を用いないデータ処理で実施し,「距離の読取精度」を向上させることが可能 となったので,正確かつ精密な音速測定ができた。

尚,これらの測定は本学の中等理科専攻学生の物理学実験で実施してきた内容を,また教員研修や中学生 向けの「科学実験大学講座」でおこなってきた内容をとりまとめたものである。

5. 参考文献

- 1)「スピーカーを用いた気柱共鳴による音速測定」末廣 輝男,大久保 晃男 その他,物理教育 第25巻 第 3号(1977) pp.121
- 2)「気柱を伝わる音速の温度変化」恵下 劔、川北 一彦、物理教育 第41 巻 第1 号(1993) pp.9
- (2016) pp.116
 (2016) pp.116
- 4)「気柱共鳴の生徒実験において波長と開口端補正を求めることの難しい理由」本弓 康之,物理教育 第 64巻 第4号(2016) pp.249
- 5)「音速測定」鬼塚 史朗, 物理教育 第 35 巻 第 1 号 (1987) pp.1
- 6)「パソコンによる空気中の音速の測定」山田 盛夫,物理教育 第40巻 第1号(1992) pp.18
- 7)「空気中の音速のパソコン計算」山田 盛夫,物理教育 第59巻 第2号(2011) pp.116
- 8)「音速の温度依存性測定装置の開発」伴 周一, 岡田 悟志, 豊田 陽己, 物理教育 第65巻 第4号 (2017) pp.193
- 9)開口端での音の反射については、例えば、 「円菅の開口端における音波の放射と反射」安信 強、樫村 秀男、青木 俊之、松尾 一泰、九州大学大学 院総合理工研究科報告、Vol.14 No.3 (1992) pp.337-343 「パルス音源を用いたダクト開口端反射減衰の測定法に関する研究」佐藤 真耶、塩川 博義、日本建築 学会技術報告書 第 17 巻 第 36 号 (2011) pp. 555-558